气力推进艇运行中水流场状态及阻力模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Water Flow Field State and Resistance for Airboat
  • 作者:陈萌 ; 赵小婷 ; 储江伟 ; 李洪亮 ; 吴勃生
  • 英文作者:CHEN Meng;ZHAO Xiaoting;CHU Jiangwei;LI Hongliang;WU Bosheng;College of Traffic and Transportation,Northeast Forestry University;
  • 关键词:气力推进艇 ; 湿地 ; 生态调查 ; 运行特性 ; XFlow
  • 英文关键词:airboat;;wetland;;ecological investigation;;operation characteristics;;XFlow
  • 中文刊名:CGGL
  • 英文刊名:Journal of Chongqing University of Technology(Natural Science)
  • 机构:东北林业大学交通学院;
  • 出版日期:2019-04-15
  • 出版单位:重庆理工大学学报(自然科学)
  • 年:2019
  • 期:v.33;No.402
  • 基金:国家林业局“948”项目
  • 语种:中文;
  • 页:CGGL201904009
  • 页数:6
  • CN:04
  • ISSN:50-1205/T
  • 分类号:61-66
摘要
基于湍流模型,利用将精确的大涡模拟(LES)与格子玻尔兹曼方法(LBM)结合的XFlow软件,分析了气力推进艇艇身周围的瞬态流场、阻力特性,并将模拟结果与实际测试进行比对。结果表明:最大水流速度和最大涡度出现于艇体稳定运行后的尾流区域,且艇体前端的水流速度相对较小,流体流动具有连续性。推进艇在不同螺旋桨推力下达到稳定运行状态的速度不同,当螺旋桨推力为600 N时,气力推进艇在稳定运行状态时的速度约为7. 27 m/s;当螺旋桨推力为300 N时,气力推进艇在稳定运行状态时的速度约为5. 16 m/s,运行阻力随速度增加而变大。
        Based on the turbulence model,the XFlow software was used to combine the Large eddy simulation( LES) with the Lattice Boltzmann method( LBM) to analyze the transient flow field and drag characteristics for the airboat. The comparison between the simulation and experimental results were conduct,which show that the maximum water velocity and the maximum vorticity appear in the wake area when the airboat reaches the steady operation phase. The velocity of the water in the front of the airboat is relatively small and the fluid flow is continuous. Different propeller thrust test of the airboat is carried out,the results show that the steady state speed of the airboat is about 5. 27 m/s under large propeller thrust of 600 N,and the steady state speed of the airboat is about 4. 16 m/s under large propeller thrust of 300 N,in addition,the drag increases with speed.
引文
[1]詹长书,储江伟,田广东.空气动力艇的国内外生产与应用现状[J].森林工程,2013,29(2):103-106.
    [2]ZACHEIS A,DORAN K.Resistance and resilience of floating mat fens in interior alaska following airboat disturbance[J].Wetlands,2009,29(1):236-247.
    [3]RACINE C H,WALTERS J C,JORGENSON M T.Airboat use and disturbance of floating mat fen wetlands in Interior Alaska,U.S.A.[J].Arctic,1998,51(4):371-377.
    [4]KAIZU Y,IIO M,YAMADA H,et al.Development of unmanned airboat for water-quality mapping[J].Biosystems Engineering,2011,109(4):338-347.
    [5]WESTENBERG D J,BRAUNE A,RUPPERT C,et al.The meeting of the American society of mechanical engineers[J].Naval Engineers Journal,2010,12(2):432-527.
    [6]HU Z Z,CAUSON D M,MINGHAM C G,et al.Numerical simulation of floating bodies in extreme free surface waves[J].Natural Hazards&Earth System Sciences,2011,11(2):519-527.
    [7]苏砚文.基于LBM-LES的水翼绕流及空化流的并行数值模拟与实验研究[D].北京:中国农业大学,2017.
    [8]丁绍军,王琳,杨翊仁.控制棒定位隔板局部水力损失系数的数值计算[J].重庆理工大学学报(自然科学),2017(10):96-99.
    [9]PAWEL A W,JORIS C G V,GEIR K P.Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave[J].Coastal Engineering,2014,91(9):1-17.
    [10]黄振宇,缪国平.大涡模拟在水下航行体周围黏性流场计算中的初步应用[J].水动力学研究与进展,2006,21(2):190-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700