管子模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tube Model
  • 作者:阮永金 ; 卢宇源 ; 安立佳
  • 英文作者:Yong-jin Ruan;Yu-yuan Lu;Li-jia An;State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:非线性流变学 ; 管子模型 ; 缠结高分子流体 ; GLaMM理论 ; 单链平均场理论
  • 英文关键词:Non-linear rheology;;Tube model;;Entangled polymers;;GLaMM theory;;Single-chain mean-field theory
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院大学;中国科学院长春应用化学研究所高分子物理与化学国家重点实验室;
  • 出版日期:2018-11-05 08:57
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国防基础科学核科学(材料与化学方向)挑战专题(项目号TZ2018004);; 国家自然科学基金(基金号21674113,21334007,21790340);; 中国科学院前沿科学重点研究项目(项目号QYZDY-SSWSLH027);中国科学院青年创新促进会(基金号2016204)资助项目
  • 语种:中文;
  • 页:GFXB201812003
  • 页数:14
  • CN:12
  • ISSN:11-1857/O6
  • 分类号:35-48
摘要
高分子非线性流变学是发展高效、节能高分子材料及其加工技术的学科基础.针对缠结高分子流体,de Gennes、Doi和Edwards基于单链平均场近似建立了"管子模型".该模型奠定了现代高分子流体非线性流变学的基础,标志着人类描述缠结高分子流体步入了分子流变学时代.然而,"管子模型"过于简化的物理图像无法基于分子链本身和第一性原理,处理快速大形变条件下缠结高分子流体非线性流变学的一些问题;另一方面,"管子模型"无法统一描述近期的一些流变学实验现象.这就需要重新考虑现有的单链平均场假设和多链相互作用,建立分子流变学的新范式.本文介绍了"管子模型"及其修正理论的基本物理图像、概念及其发展历程,给出了该模型中核心方程的推导过程及其参数的物理意义,最后,对该领域的未来发展趋势以及面临的机遇和挑战进行了简明扼要的展望.希望通过本文能够加深读者对"管子模型"的认识和理解.
        Nonlinear rheology for polymers is the foundational science underlying high efficiency and energysaving processing of polymeric materials. For chainlike polymers, complicated interchain interactions affect their dynamics and determine the structure-processing-property relationship. This interaction is often called the entanglement, and becomes the key issue in polymer rheology. To our knowledge, the rheological behavior of entangled polymers is based on the de Gennes-Doi-Edwards tube model(DE theory), which reduces the manychain interaction into a smooth confining tube and assumes the test chain undergoes the Rouse dynamics inside the tube. Some predictions based on the DE theory are in agreement with rheological results, for instance, the timestrain separated form of the reduced relaxation modulus. To overcome some obvious disadvantages and provide reasonable results, many improvements and refinements have also been made to the DE theory. However, the tube model is only an essential single-chain mean-field theory since its intuitive molecular picture is too simple the theory cannot be derived from first principles and lacks self-consistency. In brief, the tube model does not describe how entanglement arises and cannot address the problem of when, how, and why disentanglement occurs after the external deformation. The model is inadequate in describing the chain conformation under fast and large deformations, and fails to explain a number of experimental observations in recent studies, such as the shear banding and the nonquiescent relaxation which show remarkable strain localization phenomena. Therefore, it is necessary to reexamine the single-chain mean-field assumptions and to consider the many-chain interactions explicitly. In other words, the chain entanglement may involve active localized intermolecular interactions that should be preceived as network junctions, and the critical picture of barrier-free Rouse retraction is questionable.In this article, we provide a general introduction to the original tube model and its subsequent improvements, with an emphasis on the development, basic assumptions, and key concepts. We provide derivation of some key results and explain the physical meaning of the parameters. The article ends with an outlook of the challenges and opportunities in the theory for polymer rheology, hoping to motivate researchers to working on this field.
引文
1Doi M,Edwards S F.The Theory of Polymer Dynamics.New York:Oxford University Press,1986.1-20,188-283
    2Dealy J M,Larson R G.Structure and Rheology of Molten Polymers:From Structure to Flow Behavior and Back Again.Munich:Hanser Publishers,2006.91-126,193-229,329-400,415-464
    3Rubinstein M,Colby R H,Polymer Physics.New York:Oxford University Press,2003.30-53,197-252
    4Wang Shiqing(王十庆).Sci China Chem(中国科学-化学),2010,53(1):151-156
    5Kalathi J T,Kumar S K,Rubinstein M,Grest G S.Macromolecules,2014,47(19):6925-6931
    6Casale A,Porter R S,Johnson J F.Polym Rev,1971,5(2):387-408
    7Berry G C,Fox T G.Adv Polym Sci,1968,5:261-357
    8Lodge T P.Phys Rev Lett,1999,83(16):3218-3221
    9de Gennes P G.J Chem Phys,1971,55(2):572-579
    10Doi M,Edwards S F.J Chem Soc,Faraday Trans 2,1978,74:1789-1801
    11Doi M,Edwards S F.J Chem Soc,Faraday Trans 2,1978,74:1802-1817
    12Doi M,Edwards S F.J Chem Soc,Faraday Trans 2,1978,74:1818-1832
    13Doi M,Edwards S F.J Chem Soc,Faraday Trans 2,1979,75:38-54
    14Graham R S,Likhtman A E,McLeish T C B,Milner S T.J Rheol,2003,47(5):1171-1200
    15Wang S-Q,Wang Y,Cheng S,Li X,Zhu X,Sun H.Macromolecules,2013,46(8):3147-3159
    16Lu Yuyuan(卢宇源),An Lijia(安立佳),Wang Jian(王健).Acta Polymerica Sinica(高分子学报),2016,(6):688-697
    17Kaye A,Non-Newtonian Flow in Incompressible Fluids.Cranford:College of Aeronautics Press,1962.4-16
    18Bernstein B,Kearsley E A,Zapas L J.Trans Soc Rheol,1963,7:391-410
    19Larson R G,Constitutive Equations for Polymer Melts and Solutions.Stoneham:Butterworth Publishers,1988.29-49
    20Green M S,Tobolsky A V.J Chem Phys,1946,14(2):80-92
    21Lodge A S.Rheol Acta,1968,7(4):379-392
    22Doi M.J Polym Sci,Part B:Polym Phys,1983,21(5):667-684
    23Milner S,McLeish T.Phys Rev Lett,1998,81(3):725-728
    24Viovy J L,Rubinstein M,Colby R H.Macromolecules,1991,24(12):3587-3596
    25Rubinstein M,Colby R H.J Chem Phys,1988,89(8):5291-5306
    26Ianniruberto G,Marrucci G.J Non-Newton Fluid Mech,1996,65(2):241-246
    27Marrucci G.J Non-Newton Fluid Mech,1996,62(2-3):279-289
    28Likhtman A E,Milner S T,McLeish T C B.Phys Rev Lett,2000,85(21):4550-4553
    29Milner S T,McLeish T C B,Likhtman A E.J Rheol,2001,45(2):539-563
    30Ruan Yongjin(阮永金),Wang Zhenhua(王振华),Lu Yuyuan(卢宇源),An Lijia(安立佳).Acta Polymerica Sinica(高分子学报),2017,(5):727-743
    31Edwards S F.Proc Phys Soc,1967,92(575):9-16
    32Edwards S F.British Polym J,1977,9(2):140-143
    33Rouse P E.J Chem Phys,1953,21(7):1272-1280
    34Likhtman A E,Sukumaran S K,Ramirez J.Macromolecules,2007,40(18):6748-6757
    35Onogi S,Masuda T,Kitagawa K.Macromolecules,1970,3(2):109-116
    36Osaki K,Kurata M.Macromolecules,1980,13(3):671-676
    37Osaki K,Nishizawa K,Kurata M.Macromolecules,1982,15(4):1068-1071
    38Archer L A.J Rheol,1999,43(6):1555-1571
    39Archer L A,Sanchez-Reyes J,Juliani.Macromolecules,2002,35(27):10216-10224
    40Tanner R I.Trans Soc Rheol,1973,17(2):365-373
    41Gao H W,Ramachandran S,Christiansen E B.J Rheol,1981,25(2):213-235
    42Likhtman A E,McLeish T C B.Macromolecules,2002,35(16):6332-6343
    43Graham R S,Henry E P,Olmsted P D.Macromolecules,2013,46(24):9849-9854
    44Auhl D,Ramirez J,Likhtman A E,Chambon P,Fernyhough C.J Rheol,2008,52(3):801-835
    45Lodge A S.Rheol Acta,1989,28(5):351-362
    46Ravindranath S,Wang S Q.Macromolecules,2007,40(22):8031-8039
    47Cheng S,Lu Y,Liu G,Wang S Q.Soft Matter,2016,12(14):3340-3351
    48Wang S Q,Ravindranath S,Boukany P,Olechnowicz M,Quirk R P,Halasa A,Mays J.Phys Rev Lett,2006,97(18):187801(1-4)
    49Boukany P E,Wang S Q,Wang X.Macromolecules,2009,42(16):6261-6269
    50Lu Yuyuan(卢宇源),Li Liangbin(李良彬),Yu Wei(俞炜),An Lijia(安立佳).Acta Polymerica Sinica(高分子学报),2018,(12):1558-1562
    51Wang S Q.Nonlinear Polymer Rheology:Macroscopic Phenomenology and Molecular Foundation.Hoboken:John Wiley&Sons,2018.4-415
    52Inoue T,Uematsu T,Yamashita Y,Osaki K.Macromolecules,2002,35(12):4718-4724
    53Huang Q,Hengeller L,Alvarez N J,Hassager O.Macromolecules,2015,48(12):4158-4163
    54Nielsen J K,Hassager O,Rasmussen H K,McKinley G H.J Rheol,2009,53(6):1327-1346
    55Wang Z,Lam C N,Chen W R,Wang W,Liu J,Liu Y,Porcar L,Stanley C B,Zhao Z,Hong K,Wang Y.Phys Rev X,2017,7(3):031003(1-16)
    56Xu W S,Carrillo J M Y,Lam C N,Sumpter B G,Wang Y.ACS Macro Lett,2018,7(2):190-195
    57Hsu H P,Kremer K.ACS Macro Lett,2017,7(1):107-111
    58Kr?ger M,Hess S.Phys Rev Lett,2000,85(5):1128-1131
    59Kremer K,Grest G S.J Chem Phys,1990,92(8):5057-5086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700