基于能量法的颗粒阻尼器减振机理研究及参数分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parameter analysis and research on the vibration damping mechanism of particle damper based on energy theory
  • 作者:王宝顺 ; 闫维明 ; 何浩祥 ; 许维炳
  • 英文作者:WANG Bao-shun;YAN Wei-ming;HE Hao-xiang;XU Wei-bing;Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit,Beijing University of Technology;
  • 关键词:颗粒阻尼器 ; 摩擦效应 ; 能量法 ; 碰撞 ; 接触单元
  • 英文关键词:particle damper;;friction effect;;energy method;;collision;;contact element
  • 中文刊名:ZDGC
  • 英文刊名:Journal of Vibration Engineering
  • 机构:北京工业大学工程抗震与结构诊治北京市重点试验室;
  • 出版日期:2019-06-15
  • 出版单位:振动工程学报
  • 年:2019
  • 期:v.32
  • 基金:国家重点研发计划(2017YFC1500604,2017YFC1500603);; 国家自然科学基金资助项目(51378039)
  • 语种:中文;
  • 页:ZDGC201903002
  • 页数:10
  • CN:03
  • ISSN:32-1349/TB
  • 分类号:14-23
摘要
颗粒阻尼技术因频带宽和鲁棒性强等优点在土木工程减振领域具有良好的应用前景,但由于颗粒的力学行为具有高度非线性特征且影响因素复杂,相关力学机理研究尚不深入,亟需改进。在阻尼颗粒未发生堆积的条件下,考虑阻尼颗粒与阻尼器腔体之间的碰撞过程和摩擦效应,构建一种颗粒阻尼器-单自由度结构系统力学模型。基于能量法对颗粒阻尼器-单自由度结构各组分能量进行求解,对结构系统各部分耗能规律进行分析,明晰减振机理,对颗粒阻尼器和TMD的减振效果进行对比并探究颗粒材料参数影响规律。通过单层钢框架电磁振动台试验验证基于能量法的结构动力分析的准确性。结果表明:在同等条件下,当结构发生共振时TMD的减振效果较优,非共振时颗粒阻尼器的减振效果较优;在非共振条件下,颗粒阻尼器的减振效果随碰撞恢复系数的减小或滚动摩擦系数的增大而增加,小粒径阻尼颗粒的减振效果更优。
        Particle damping technology has many application prospects in the field of civil engineering due to its advantages of wide working frequency bands and strong robustness.However,the mechanical behaviors of the particles are highly nonlinear and their working mechanism is very complex,which is up to now not well revealed and need urgently to be improved.Considering the collision process and friction effect between the damping particles and the damper cavity for the case that the damping particles do not accumulate,a mechanical model of particle damper is constructed.First,the energy method is used to solve the energy of each component of the SDOF system with particle damper.The energy consumption rule of each part of the structural system is analyzed carefully,and the damping mechanism is clarified.Then,the damping effect of the particle damper and TMD is compared,and the influence of the particle material parameters is explored.The accuracy of the structural dynamic analysis based on energy method is verified through the electromagnetic shaking table test of a single-layer steel frame.The research results show that the damping effect of TMD is better when the structure resonance occurs,and the damping effect of the particle damper is better for non-resonant case.Under non-resonant conditions,the damping effect of the particle damper increases with the decrease of the impact recovery coefficient or with the increase of the rolling friction coefficient.It also shows that the damping particle with smaller radius has better damping effect.
引文
[1] Panossian H V.Structural damping enhancement via non-obstructive particle damping technique[J].Journal of Vibration&Acoustics,1990,114(1):101-105.
    [2]赵玲,刘平,卢媛媛.非阻塞性微颗粒阻尼柱阻尼特性的实验研究[J].振动与冲击,2009,28(8):1-5.Zhao Ling,Liu Ping,Lu Yuan-yuan.Experimental investigation on damping characteristics of NOPD columns[J].Journal of Vibration and Shock,2009,28(8):1-5.
    [3] Panossian H V. Non-obstructive particle damping tests on Aluminum beams[C].Proceedings of Damping1,San Diego,California,1991:13-15.
    [4] Bhatti R A,Wang Y R.Simulation of particle damping under centrifugal loads[J].International Journal of Mechanical,Industrial and Aerospace Engineering,2011,5(3):165-170.
    [5] Xu Z,Wang M Y,Chen T.A particle damper for vibration and noise reduction[J].Journal of Sound and Vibration,2004,270(4/5):1033-1040.
    [6] Bai X M,Shah B,Keer L M.Particle dynamics simulations of a piston-based particle damper[J].Powder Technology,2009,189(1):115-125.
    [7] Masri S F,Caughey T K.On the stability of the impact damper[J].Journal of Applied Mechanics,1966,33(3):586-592.
    [8] Xu Z W,Chan K W,Liao W H.An empirical method for particle damping design[J].Shock and Vibration,2004,11(5-6):647-664.
    [9] Xu Z W,Wang M Y,Chen T N.Particle damping for passive vibration suppression:Numerical modelling and experimental investigation[J].Journal of Sound and Vibration,2005,279(3-5):1097-1120.
    [10]Xu Z W,Wang M Y,Chen T N.An experimental study of particle damping for beams and plates[J].Journal of Vibration and Acoustics-Transactions of the ASME,2004,126(1):141-148.
    [11]Saeki M.Impact damping with granular materials in a horizontally vibrating system[J].Journal of Sound and Vibration,2002,251(1):153-161.
    [12]苏凡,张航,尹忠俊.颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响[J].振动与冲击,2018,37(8):238-244.Su Fan,Zhang Hang,Yin Zhong-jun.Effects of rheology behavior and material parameters of granular material on energy dissipation of a particle damper[J].Journal of Vibration and Shock,2018,37(8):238-244.
    [13] Wu C Y,Li L Y,Thornton C.Energy dissipation during normal impact of elastic and elastic-plastic spheres[J].International Journal of Impact Engineering,2005,32(1-4):593-604.
    [14]赵玲,刘平,卢媛媛.NOPD单自由度体系阻尼特性的实验研究[J].世界地震工程,2009,25(3):34-38.Zhao Ling,Liu Ping,Lu Yuan-yuan.Experimental studies on damping characteristics of a SDOF NOPD system[J].World Earthquake Engineering,2009,25(3):34-38.
    [15]Lu Z,Lu X,Lu W,et al.Experimental studies of the effects of buffered particle dampers attached to a multidegree-of-freedom system under dynamic loads[J].Journal of Sound and Vibration,2012,331(9):2007-2022.
    [16]张向东.高架路交通诱发振动与建筑物减振控制方法研究[D].北京:北京工业大学,2009.Zhang Xiang-dong.Research on vibration induced by elevated road and vibration control methods of buildings[D].Beijing:Beijing University of Technology,2009.
    [17]Papalou A.Performance of particle dampers under random excitation[J].Journal of Vibration&Acoustics,1996,118(4):614-621.
    [18]Johnson K L.Contact Mechanics[M].UK:Cambridge University Press,1985.
    [19]Maison B F,Kasai K.Analysis for a type of structural pounding[J].Journal of Structural Engineering,1990,116(4):957-977.
    [20]Anagnostopoulos S A.Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems[J].Earthquake Engineering and Structural Dynamics,2004,33(8):897-902.
    [21]Chau K T,Wei X X.Pounding of structures modeled as non-linear impacts of two oscillators[J].Earthquake Engineering and Structural Dynamics,2001,30(5):633-651.
    [22]Hunt K H,Crossley F R E.Coefficient of restitution interpreted as damping in vibroimpact[J].Journal of Applied Mechanics,1975,42(2):440-445.
    [23]Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding[J].Earthquake Engineering and Structural Dynamics,2005,34(6):595-611.
    [24]Tavarez F A.Discrete element method for modeling solid and particulate materials[J].International Journal for Numerical Methods in Engineering,2007,70(4):379-404.
    [25]何思明,吴永,李新坡.颗粒弹塑性碰撞理论模型[J].工程力学,2008,25(12):19-24.He Si-ming,Wu Yong,Li Xin-po.Theory model on elastic-plastic granule impact[J].Engineering Mechanics,2008,25(12):19-24.
    [26]Thorton C.Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J].Journal of Applied Mechanics,1997,64(2):383.
    [27]金栋平.碰撞振动与控制[M].北京:科学出版社,2005.Jin Dong-ping.Collision Vibration and Control[M].Beijing:Science Press,2005.
    [28]Den Hartog J P.Mechanical Vibrations[M].New York,USA:MCGYaw-Hill,1956:87-93.
    [29]Masri S F,Caughey T K.On the stability of the impact damper[J].Journal of Applied Mechanics,1966,33(3):586-592.
    [30]鲁正,吕西林.缓冲型颗粒阻尼器减振控制的试验研究[J].土木工程学报,2013,46(5):93-98.Lu Zheng,Lv Xi-lin.Experimental investigation into the vibration control effects of buffered particle dampers[J].China Civil Engineering Journal,2013,46(5):93-98.
    [31]闫维明,王瑾,许维炳.基于单自由度结构的颗粒阻尼减振机理试验研究[J].土木工程学报,2014,47(S1):76-82.Yan Wei-ming,Wang Jin,Xu Wei-bing.Experimental research on the control mechanism of particle damping based on a single degree of freedom structure[J].China Civil Engineering Journal,2014,47(S1):76-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700