Thermal atomic layer etching: Mechanism, materials and prospects
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal atomic layer etching: Mechanism, materials and prospects
  • 作者:Chang ; Fang ; Yanqiang ; Cao ; Di ; Wu ; Aidong ; Li
  • 英文作者:Chang Fang;Yanqiang Cao;Di Wu;Aidong Li;National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University;
  • 英文关键词:Thermal atomic layer etching;;Atomic layer deposition;;Self-limiting;;Reaction mechanism;;Atomic-scale precision
  • 中文刊名:ZKJY
  • 英文刊名:自然科学进展-国际材料(英文版)
  • 机构:National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University;
  • 出版日期:2018-12-15
  • 出版单位:Progress in Natural Science:Materials International
  • 年:2018
  • 期:v.28
  • 基金:supported by the Natural Science Foundation of China (51571111, 51721001, 51802150);; Jiangsu Province (BK2016230, and BK20170645);; The grant from the State Key Program for Basic Research of China (2015CB921203);; the general grant from the China Postdoctoral Science Foundation (2017M611778);; support from the Fundamental Research Funds for the Central Universities (021314380075);; open project of NLSSM (M30038)
  • 语种:英文;
  • 页:ZKJY201806003
  • 页数:9
  • CN:06
  • ISSN:10-1147/N
  • 分类号:19-27
摘要
In the semiconductors and related industries, the fabrication of nanostructures and nanopatterns has become progressive demand for achieving near-atomic accuracy and selectivity in etching different materials, particularly in ultra-thin gate dielectrics and ultra-thin channels used in field-effect transistors and other nanodevices below 10 nm scale. Atomic layer etching(ALE) is a novel technique for removing thin layers of material using sequential and self-limiting reactions. Different from most ALE processes using plasma-enhanced or other energetic particles-enhanced surface reactions, thermal ALE realizes isotropic atomic-level etch control based on sequential thermal-drive reaction steps that are self-terminating and self-saturating. Thermal ALE can be viewed as the reverse of atomic layer deposition(ALD), both of which define the atomic layer removal and growth steps required for advanced semiconductor fabrication. In this review, we focus on the concept and basic characteristics of the thermal ALE in comparison with ALD. Several typical thermal ALE mechanisms including fluorination and ligand-exchange, conversion-etch, oxidation and fluorination reactions are intensively introduced.The pros and cons of thermal ALE, plasma ALE, and traditional plasma etching are compared. Some representative materials and their typical thermal ALE processes are summarized. Finally, the outlook and challenges of thermal ALE are addressed.
        In the semiconductors and related industries, the fabrication of nanostructures and nanopatterns has become progressive demand for achieving near-atomic accuracy and selectivity in etching different materials, particularly in ultra-thin gate dielectrics and ultra-thin channels used in field-effect transistors and other nanodevices below 10 nm scale. Atomic layer etching(ALE) is a novel technique for removing thin layers of material using sequential and self-limiting reactions. Different from most ALE processes using plasma-enhanced or other energetic particles-enhanced surface reactions, thermal ALE realizes isotropic atomic-level etch control based on sequential thermal-drive reaction steps that are self-terminating and self-saturating. Thermal ALE can be viewed as the reverse of atomic layer deposition(ALD), both of which define the atomic layer removal and growth steps required for advanced semiconductor fabrication. In this review, we focus on the concept and basic characteristics of the thermal ALE in comparison with ALD. Several typical thermal ALE mechanisms including fluorination and ligand-exchange, conversion-etch, oxidation and fluorination reactions are intensively introduced.The pros and cons of thermal ALE, plasma ALE, and traditional plasma etching are compared. Some representative materials and their typical thermal ALE processes are summarized. Finally, the outlook and challenges of thermal ALE are addressed.
引文
[1]M.Guillorn,J.Chang,N.Fuller,J.J.Patel,Vac.Sci.Technol.B 27(6)(2009)2588-2592.
    [2]S.Samukawa,M.Hori,S.Rauf,K.Tachibana,P.Bruggeman,G.Kroesen,J.C.Whitehead,A.B.Murphy,A.F.Gutsol,S.Starikovskaia,U.Kortshagen,J.P.Boeuf,T.J.Sommerer,M.J.Kushner,U.Czarnetzki,J.Phys.D:Appl.Phys.45(25)(2012)253001.
    [3]S.M.George,Chem.Rev.110(2010)111-131.
    [4]V.M.Donnelly,A.Kornblit,J.Vac.Sci.Technol.A 31(5)(2013)050825-050848.
    [5]C.G.N.Lee,K.J.Kanarik,R.A.Gottscho,J.Phys.D:Appl.Phys.47(27)(2014)994-1004.
    [6]S.Banna,A.Agarwal,G.Cunge,M.Darnon,E.Pargon,O.Joubert,J.Vac.Sci.Technol.A 30(4)(2012)040801-040829.
    [7]N.Marchack,J.P.Chang,J.Phys.D:Appl.Phys.44(17)(2011)174011-174021.
    [8]T.Faraz,F.Roozeboom,H.C.M.Knoops,W.M.M.Kessels,ECS J.Solid State Sci.Technol.4(6)(2015)N5023-N5032.
    [9]A.Sherman,Atomic Layer Deposition For Nanotechnology:an Enabling Process for Nanotechnology Fabrication,Ivoryton Press,New York,2008.
    [10]A.D.Li,Atomic Layer Deposition Technology-Fundamental and Applications,Scientific Press,Beijing,2016.
    [11]M.N.Yoder,Atomic layer etching:U.S.Patent,4756794A,1988.
    [12]P.A.Maki,D.J.Ehrlich,Appl.Phys.Lett.55(1989)91-93.
    [13]H.Sakaue,K.Asami,T.Ichihara,S.Ishizuka,K.K.Y.Horiike,Digital process for advanced VLSI's and surface reaction study,MRS Proc.(1991)222.
    [14]G.S.Oehrlein,D.Metzler,C.Li,Atomic layer etching at the tipping point:an overview,ECS J.Solid State Sci.Technol.4(6)(2015)N5041-N5053.
    [15]C.Petit-Etienne,M.Darnon,P.Bodart,M.Fouchier,G.Cunge,E.Pargon,L.Vallier,O.Joubert,J.Vac.Sci.Technol.B 31(1)(2013)(011201-1~8).
    [16]Y.Lee,S.M.George,ACS Nano 9(2015)2061-2070.
    [17]S.M.George,Y.Lee,ACS Nano 10(2016)4889-4894.
    [18]C.T.Carver,J.J.Plombon,P.E.Romero,S.Suri,T.A.Tronic,R.B.Turkot,J.ECS J.Solid State Sci.Technol.4(2015)N5005-N5009.
    [19]K.J.Kanarik,T.Lill,E.A.Hudson,S.Sriraman,S.Tan,J.Marks,V.Vahedi,R.A.Gottscho,J.Vac.Sci.Technol.A 33(2)(2015)(20802-1~14).
    [20]Y.Lee,S.M.George,Chem.Mater.29(2017)8202-8210.
    [21]Y.Lee,J.W.DuMont,S.M.George,ECS J.Solid State Sci.Technol.4(2015)N5013-N5022.
    [22]C.Paul,Lemaire,N.P.Gregory,Chem.Mater.29(2017)6653-6665.
    [23]O.Joubert,E.Despiau-Pujo,G.Cunge,In:Proceedings of the Workshop on AtomicLayer-Etch and Clean Technology.San Francisco,CA,2014.
    [24]J.DuMont,A.E.Marquardt,A.M.Cano,S.M.George,ACS Appl.Mater.Interfaces 9(2017)10296-10307.
    [25]R.Nicholas,Johnson,S.M.George,ACS Appl.Mater.Interfaces 9(2017)34435-34447.
    [26]Y.Lee,J.W.DuMont,S.M.George,Chem.Mater.28(2016)2994-3003.
    [27]J.C.Lockhart,Chem.Rev.65(1965)131-151.
    [28]H.W.Roesky,I.J.Haiduc,Chem.Soc.,Dalton Trans.(1999)2249-2264.
    [29]Y.Lee,C.Huffman,S.M.George,Chem.Mater.28(2016)7657-7665.
    [30]N.R.Johnson,H.Sun,K.Sharma,S.M.George,J.Vac.Sci.Technol.A 34(2016)050603.
    [31]Y.Lee,J.W.DuMont,S.M.George,J.Phys.Chem.C 119(2015)25385-25393.
    [32]J.K.Kang,J.Chem.Phys.116(2002)275-280.
    [33]R.David,Zywotko,S.M.George,Chem.Mater.29(2017)1183-1191.
    [34]W.Y.Xie,C.Paul,Lemaire,G.N.Parsons,ACS Appl.Mater.Interfaces 10(2018)9147-9154.
    [35]D.Choi,K.Barmak,Electron.Mater.Lett.13(2017)449-456.
    [36]H.J.Kim,Vac.Sci.Technol.,B:Microelectron.Process.Phenom.21(2003)2231-2261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700