江西某铜矿磨矿对比试验及应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison Test and Application Study on Grinding of a Copper Mine in Jiangxi Province
  • 作者:黄胤淇 ; 肖庆飞 ; 郭运鑫 ; 王旭东
  • 英文作者:HUANG Yinqi;XIAO Qingfei;GUO Yunxin;WANG Xudong;Faculty of Land Resource Engineering,Kunming University of Science and Technology;
  • 关键词:铜矿 ; 磨矿产品 ; 粒度组成 ; 选矿指标 ; 磨矿介质 ; 矿石性质 ; 磨矿效果 ; 工业应用
  • 英文关键词:copper deposit;;grinding product;;particle size composition;;mineral processing index;;grinding media;;ore property;;grinding effect;;industry application
  • 中文刊名:HJKJ
  • 英文刊名:Gold Science and Technology
  • 机构:昆明理工大学国土资源工程学院;
  • 出版日期:2019-04-30
  • 出版单位:黄金科学技术
  • 年:2019
  • 期:v.27;No.205
  • 基金:国家自然科学基金面上项目“多级配球介质磨矿的能量匹配及机理研究”(编号:51774517);; 矿物加工科学与技术国家重点实验室开放研究基金“磨矿介质在磨机中的运动规律研究”(编号:201707)联合资助
  • 语种:中文;
  • 页:HJKJ201902020
  • 页数:7
  • CN:02
  • ISSN:62-1112/TF
  • 分类号:130-136
摘要
针对江西某选厂铜矿石磨矿产品粒度组成差、铜回收率低及磨矿介质消耗量大的问题,以矿石性质为依据,通过实验室磨矿对比试验提出工业化应用的最佳磨矿介质尺寸及配比方案,从而达到改善磨矿效果的目的。实验室磨矿对比试验得出处理矿石的最优初装球方案为?70∶?50∶?40∶?30=20∶30∶20∶30。工业试验期间,从现场7#和8#球磨机溢流中取得矿样,在实验室进行浮选对比试验。工业试验结果表明:应用推荐和2.13%,+0.2 mm百分含量减少了3.14%,中间易选级别-0.2+0.038 mm百分含量提高了2.68%,铜回收率提高了3.70%,球耗降低了0.032 kg/t,为提高铜的浮选回收率创造了有利条件,同时对提高磨矿作业质量具有一定的指导意义。
        The properties of copper ores in a copper concentrator in Jiangxi Province have changed greatly since August 2016,which resulting in obvious differences in particle size composition of grinding products,large consumption of grinding media and reduction of copper recovery rate in the flotation process.Starting with the size and proportion of grinding media,through the determination of ore properties,comparative grinding tests and industrial application work,the purpose of improving the quality of grinding products and copper sortingindexes and reducing the steel ball consumption can be achieved. The mechanical properties of 16 ore blocks with specifications greater than 200 mm were determined on a press of model DE50 A.According to the measurement of rock mechanical properties,the average values of Pushi hardness coefficient f and Poisson's ratio of the porphyry copper ore in this concentrator are only 5 and 0.155,respectively,belonging to soft and brittle ores. The comparison test of copper ore grinding in the concentrator was carried out in a 450 mm× 450 mm discontinuous ball mill in the laboratory.According to the mechanical properties of the ore and the grinding conditions in the field,the maximum grinding ball diameter was calculated to be 70 mm,and four groups of grinding test schemes were formulated and the grinding test was carried out with the steel ball ratio of each scheme.According to the calculation of grinding medium size and ratio and the laboratory grinding comparison test,the optimal grinding medium size and ratio of 3.2 m× 3.1 m lattice ball mill in concentrator is ?70∶?50∶?40∶?30=20∶30∶20∶30. The grain size uniformity of the grinding products in this scheme is the best,the coarse grade yield including +0.2 mm grain size is the lowest,while the intermediate easy grade,-0.2 +0.038 mm grain size yield is the highest,reaching 66.78%,while the-0.038 mm grain size content is lower. During the industrial test,ore samples were obtained from the overflow of the 7# and 8# mills on site,and flotation comparison tests were carried out in the laboratory XFD-0.5 mini flotation machine.The industrial test results show that the content of-0.038 mm and-0.074 mm in grinding products increased by 0.47%,2.13%,and the content of + 0.2 mm decreased by 3.14% after using the recommended medium scheme. The content of-0.2 + 0.038 mm in the intermediate easy-to-select grade increased by 2.68%,the copper recovery rate increased by 3.70%,and the unit ball consumption decreased by 0.032 kg/t. The aim of improving the grain size composition of grinding products,improving the sorting index of copper and reducing the unit consumption of medium in the copper ore processing operation of the concentrator is achieved,and it has certain guiding significance for improving the quality of grinding operations.
引文
[1]徐国琼.铜矿石的工艺矿物学特征及选矿影响因素研究[J].世界有色金属,2017(1):201,203.Xu Guoqiong. Process mineralogy characteristics of copper ore and the research to the influential factors of ore dress‐ing[J].World Nonferrous Metals,2017(1):201,203.
    [2]洪秉信,傅文章.矿物解离度与工艺粒度关系和解离难易度探讨[J].矿产综合利用,2012(1):56-60.Hong Bingxin,Fu Wenzhang. Discussion on relationship between liberation degree of mineral and processing size and difficult level of liberation[J]. Multipurpose Utiliza‐tion of Mineral Resources,2012(1):56-60.
    [3]武俊杰,李青翠,刘杨.陕西某铜金矿矿石性质研究及对选矿工艺的影响[J].有色金属(选矿部分),2017(5):1-5.Wu Junjie,Li Qingcui,Liu Yang.Study on the properties and its influence on mineral processing of a copper gold ore in Shaanxi[J]. Nonferrous Metals(Mineral Process‐ing Section),2017(5):1-5.
    [4]马立成,韦鲁滨,孙运礼.某铜矿石工艺矿物学研究[J].有色金属(选矿部分),2017(2):1-4.Ma Licheng,Wei Lubin,Sun Yunli. Research on process mineralogy of a copper ore[J]. Nonferrous Metals(Min‐eral Processing Section),2017(2):1-4.
    [5]侯英,印万忠,朱巨建,等.粒度特性参数与粒度分布均匀程度的关系[J].中南大学学报(自然科学版),2015,46(9):3183-3187.Hou Ying,Yin Wanzhong,Zhu Jujian,et al. Relationship between parameters of size characteristic and uniformity of particle size distribution[J]. Journal of Central South Uni‐versity(Science and Technology),2015,46(9):3183-3187.
    [6]李冬莲,汪桥,曹先敏,等.胶磷矿磨矿特性对浮选效果影响研究[J].非金属矿,2014(6):49-51.Li Donglian,Wang Qiao,Cao Xianmin,et al. The re‐search of grinding characteristics of phosphate on flota‐tion[J]. Non-Metallic Mines,2014(6):49-51.
    [7]倪帅男,吴彩斌,叶景胜,等.顽石作为磨矿介质在含金铜硫分离中的试验研究[J].黄金科学技术,2018,26(1):81-88.Ni Shuainan,Wu Caibin,Ye Jingsheng,et al. Experimen‐tal study on the separation of gold-copper sulfide ore by using pebble as grinding media[J]. Gold Science and Technology,2018,26(1):81-88.
    [8]Li G P,Chen W,Sun L H,et al. The influence of cylindri‐cal grinding medium on particle size and mechanical prop‐erties of TiC steel bonded carbide[J]. Materials Science Forum,2016,849:781-787.
    [9]程旭,武豪杰,王泽红.介质制度对磨矿过程影响的研究进展[J].金属矿山,2013,42(9):104-107.Cheng Xu,Wu Haojie,Wang Zehong. The research prog‐ress of effect on grinding media system on grinding pro‐cess[J]. Metal Mine,2013,42(9):104-107.
    [10]王国强,肖庆飞,王肖江,等.优化介质制度提高磨矿作业质量的试验研究[J].黄金,2017,38(1):52-55.Wang Guoqiang,Xiao Qingfei,Wang Xiaojiang,et al.Experimental research on optimizing grinding media re‐gime to improve grinding performance[J]. Gold,2017,38(1):52-55.
    [11]Xiao Q,Li B,Kang H. The effect of fine grinding medium feature on grinding results[J]. Aasri Procedia,2014,7:120-125.
    [12]马斌,刘建远.磨矿产品粒度组成对铅浮选的影响研究[J].有色金属(选矿部分),2016(2):29-33.Ma Bin,Liu Jianyuan.Research of effect of the particle size composition of grinding product on the flotation of lead[J].Nonferrous Metals(Mineral Processing Section),2016(2):29-33.
    [13]李若兰,庞建涛,王灿霞,等.短圆柱型磨矿介质在胶磷矿磨矿工艺中的应用[J].有色金属(选矿部分),2015(1):80-82.Li Ruolan,Pang Jiantao,Wang Canxia,et al. Short cylin‐drical grinding medium application research in collo‐phane grinding process[J]. Nonferrous Metals(Mineral Processing Section),2015(1):80-82.
    [14]戈保梁,张晋禄,王显强,等.云南某铜选厂尾矿再选试验[J].金属矿山,2016,45(2):176-180.Ge Baoliang,Zhang Jinlu,Wang Xianqiang,et al. Exper‐iment on reconcentration of taillings from a copper plant in Yunnan[J].Metal Mine,2016,45(2):176-180.
    [15]尹君,贺东亚,黄建芬,等.降低厂坝铅锌矿磨矿钢球消耗的技术措施[J].甘肃冶金,2014(1):5-7.Yin Jun,He Dongya,Huang Jianfen,et al. Technical measures for reducing the Changba Pb-Zn ore grinding steel ball consumption[J].Gansu Metallurgy,2014(1):5-7.
    [16]刘瑜,杨昊,邹春林,等.精确化磨矿对产品粒度分布及能耗的影响[J].矿业研究与开发,2015(7):53-57.Liu Yu,Yang Hao,Zou Chunlin,et al.Influence of accu‐rate grinding on product size distribution and energy con‐sumption[J]. Mining Research and Development,2015(7):53-57.
    [17]赵春艳,迟永欣,郭天宇,等.提高红透山铜矿选矿回收率的研究[J].矿产保护与利用,2012(5):23-26.Zhao Chunyan,Chi Yongxin,Guo Tianyu,et al. Improve‐ment of copper recovery of Hongtoushan copper mine[J].Conservation and Utilization of Mineral Resources,2012(5):23-26.
    [18]印万忠,吴凯,王纪镇,等.破碎方式对紫金山铜金矿石可磨性及浮选的影响[J].福州大学学报(自然科学版),2014,42(2):321-326.Yin Wanzhong,Wu Kai,Wang Jizhen,et al. Effect of dif‐ferent comminuting process on grindability and flotation of Zijinshan Cu-Au ore[J].Journal of Fuzhou University(Natural Science Edition),2014,42(2):321-326.
    [19]王治方.选矿厂提质增产工艺技术研究与应用[J].矿业工程,2017,15(4):26-28.Wang Zhifang. Process and technology study and applica‐tion for beneficiation plant quality improvement and pro‐duction increasing[J].Mining Engineering,2017,15(4):26-28.
    [20]吴琼.球磨机内钢球冲击粉碎试验及其机理分析[D].南京:南京工业大学,2014.Wu Qiong. Analysis of Grinding Experiment and Mecha‐nism[D].Nanjing:Nanjing Technology University,2014.
    [21]王雅琳,刘正雄,王晓丽,等.基于差分进化的球磨机钢球磨损规律预测方法[J].华东理工大学学报,2014,40(3):349-356.Wang Yalin,Liu Zhengxiong,Wang Xiaoli,et al. Predic‐tion method of the law of steel ball wear in ball mill based on differential evolution[J].Journal of East China Univer‐sity of Science and Technology,2014,40(3):349-356.
    [22]魏勇,郭利杰.磨矿条件对钢球磨损的影响及磨损规律研究[J].非金属矿,2012,35(4):21-23.Wei Yong,Guo Lijie. Research on influence of grinding conditions on wear of steel balls and wear laws[J]. NonMetallic Mines,2012,35(4):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700