基于VERA基准题的cosRMC程序验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Verification of Monte Carlo code cosRMC based on VERA core physics benchmark
  • 作者:秦瑶 ; 余慧 ; 全国萍 ; 王常辉 ; 陈义学
  • 英文作者:Qin Yao;Yu Hui;Quan Guoping;Wang Changhui;Chen Yixue;State Nuclear Power Software Development Center,State Power Investment Corporation Central Research Institute;National Energy Key Laboratory of Nuclear Power Software;
  • 关键词:COSINE ; cosRMC ; VERA ; 基准题 ; 临界
  • 英文关键词:COSINE;;cosRMC;;VERA;;benchmark;;criticality
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:国家电投科学技术研究院核电软件技术中心(大数据中心);国家能源核电软件重点实验室;
  • 出版日期:2017-11-27 13:04
  • 出版单位:强激光与粒子束
  • 年:2017
  • 期:v.29;No.246
  • 基金:国家重大专项(2016ZX06004-002)
  • 语种:中文;
  • 页:QJGY201712030
  • 页数:8
  • CN:12
  • ISSN:51-1311/O4
  • 分类号:161-168
摘要
为了验证反应堆物理软件和方法的计算能力,美国CASL(Consortium for Advanced Simulation of LWRs)项目提出了VERA(Virtual Environment for Reactor Application)堆芯物理基准题。该基准题以Watts Bar初始堆芯为模型,涵盖从二维单栅元到三维全堆芯的燃耗及换料的十个基准问题。针对VERA基准题模型,利用COSINE软件包中的反应堆蒙特卡罗分析程序cosRMC进行临界计算,得到了有效增殖因子、组件功率分布、控制棒微积分价值和反应性系数等结果。通过与基准题中提供的KENO结果对比,两种蒙特卡罗程序的计算结果吻合良好。这表明cosRMC程序具有从组件到堆芯的计算能力,其临界计算精度基本与KENO程序相当。
        The VERA core physics benchmark progression problems proposed by Consortium for Advanced Simulation of LWRs(CASL)provide a method to demonstrate the computational capabilities for reactor physics methods and software.The benchmark is based on actual fuel from the initial core loading of Watts Bar Nuclear unit 1,and consists of 10 problems ranging from a simple 2 Dpin problem cell to the full cycle depletion and refueling of problem a 3 Dreactor core configuration.In this paper,the cosRMC code is applied to perform criticality calculation of the VERA benchmark problems and the eigenvalue,assembly power distribution,differential and integral control rod worth and reactivity coefficient are obtained.By comparing the cosRMC data with the referential KENO results,it is found that the two Monte Carlo codes agree with each other well.It indicates that the cosRMC code has the capability of 2 Dlattice and 3 Dcore modeling with fairly good precision as KENO.
引文
[1]Lewis E E,Miller W F.Computational methods of neutron transport[M].La Grange:American Nuclear Society,1993.
    [2]Haghighat A.Monte Carlo methods for particle transport[M].Boca Raton:CRC Press,Taylor&Francis Group,2015.
    [3]Yang Yanhua,Chen Yixue,Zhang Hao,et al.Requirement analysis and primary design of COSINE code[J].Transactions of American Nuclear Society,2012,106:1020-1024.
    [4]Chen Yixue,Yu Hui,Liu Zhanquan,et al.Status of reactor core design code system in COSINE code package[C]//Proc of PBNC.2014.
    [5]Wang Kan,Li Zeguang,She Ding,et al.RMC-A Monte Carlo code for reactor core analysis[J].Annals of Nuclear Energy,2015,82:121-129.
    [6]Wang Kan.Recent advancements of reactor Monte carlo code RMC[R].PHYSOR 2016,2016.
    [7]Godfrey A.VERA core physics benchmark progression problem specifications[R].CASL-U-2012-0131-004.2014.
    [8]Hollenbach D F,Petrie L M,Landers N F.KENO-VI:A general quadratic version of the KENO program[R].NUREG/CR-0200,2004.
    [9]Watts Bar Unit 2Final Safety Analysis Report(FSAR)[R].ML091400651,2009.
    [10]MacFarlane R E.The NJOY nuclear data processing system[R].LA-UR-17-20093,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700