运动相关思维诱发脑电信息解码与应用综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on the decoding and application of electroencephalography information induced by motor-related mental activity
  • 作者:张力新 ; 张珊珊 ; 王坤 ; 王仲朋 ; 明东
  • 英文作者:Zhang Lixin;Zhang Shanshan;Wang Kun;Wang Zhongpeng;Ming Dong;College of Precision Instruments & Optoelectronics Engineering, Tianjin University;Academy of Medical Engineering and Translational Medicine, Tianjin University;
  • 关键词:运动想象 ; 运动执行 ; 脑-机接口 ; 思维意图检测 ; 脑电参数解码
  • 英文关键词:motor imagery;;motor execution;;brain-computer interface(BCI);;detection of movement intention;;motor parameters decoding
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:天津大学精密仪器与光电子工程学院;天津大学医学工程与转化医学研究院;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFB1002504);; 国家自然科学基金重点项目(81630051);; 天津市科技支撑计划项目(17ZXRGGX00020)资助
  • 语种:中文;
  • 页:YQXB201901001
  • 页数:11
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:4-14
摘要
运动是人类日常思维与活动最基本、最重要的必需功能之一,各式动作通过神经系统调节肌肉收缩或舒张得以实现。研究运动相关思维诱发大脑神经生理活动信息不仅可深入揭示脑认知与行为的内在神经原理和调控机制,还能为研究开发新型脑-机接口(BCI)系统、更有效辅助运动障碍患者功能康复提供关键科学依据与创新设计思路,具有显见的学术意义和应用价值。主要综述了运动想象(MI)与运动执行(ME)思维所诱发不同脑电(EEG)神经生理特征的异同;重点回顾了基于运动相关思维EEG信息解码BCI在运动意图检测、特定局部肢体运动分类及参数解码与应用的最新研究进展;分析了阻碍其发展的技术难点并探讨了可能化解思路及展望了其未来前景;以期促进相关BCI技术的深入研究与开发应用。
        Motor is one of the most basic and important functions of human beings for daily life. Various forms of movements are achieved by the muscle contraction or relaxation regulated by nervous system. Studying brain neurophysiological information induced by motor-related mental activity can not only reveal the intrinsic neurological principles and mechanisms of brain cognition and behavior, but also provide key scientific basis and innovative design ideas for the novel brain-computer interface(BCI) systems and the more effective rehabilitation of patients with motor disorders. Therefore, it has obvious academic significance and application value. This paper mainly summarizes the similarities and differences of neurophysiological features of different electroencephalography(EEG) induced by motor imagery(MI) and motor execution(ME). The latest research progress of motor-related information decoding is focused based BCI(detection of movement intention, classification of specific localized limb movement, and movement parameters decoding). The technical challenges and the possible solutions are discussed, and the further prospects are expected in order to promote the development and application of relevant BCI technology.
引文
[1] SPUELER M, WALTER A, RAMOS-MURGUIALDAY A, et al. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients[J]. Journal of Neural Engineering, 2014, 11(6): 066008.
    [2] YUAN H, HE B. Brain-computer interfaces using sensorimotor rhythms: Current state and future perspectives[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5):1425- 1435.
    [3] ROBINSON N, VINOD A P. Noninvasive brain-computer interface: Decoding arm movement kinematics and motor control[J]. IEEE Systems Man & Cybernetics Magazine, 2016, 2(4):4- 16.
    [4] MUNZERT J, LOREY B, ZENTGRAF K. Cognitive motor processes: The role of motor imagery in the study of motor representations[J]. Brain Research Reviews, 2009, 60(2):306- 326.
    [5] JIANG S, CHEN L, WANG Z, et al. Application of BCI-FES system on stroke rehabilitation[C]. International IEEE/EMBS Conference on Neural Engineering, 2015:1112- 1115.
    [6] DOUD A J, LUCAS J P, PISANSKY M T, et al. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface[J]. Plos One, 2011, 6(10):e26322.
    [7] LONG J, LI Y, WANG H, et al. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2012, 20(5): 720- 729.
    [8] CHO W, SABATHIEL N, ORTNER R, et al. Paired associative stimulation using brain-computer interfaces for stroke rehabilitation: A pilot study[J]. European Journal of Translational Myology, 2016, 26(3):6132.
    [9] 王仲朋, 陈龙, 何峰, 等. 面向康复与辅助应用的脑-机接口趋势与展望[J]. 仪器仪表学报, 2017, 38(6): 1307- 1318.WANG ZH P, CHEN L, HE F, et al. Development trend and prospect of BCI facing rehabilitation and assisting applications[J].Chinese Journal of Scientific Instrument, 2017, 38(6):1307- 1318.
    [10] GRèZES J, DECETY J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis[J]. Human Brain Mapping, 2001, 12(1):1.
    [11] 李鹏海, 王丽余, 刘瀛涛, 等. 下肢运动想象和运动执行的EEG节律特性研究[J]. 仪器仪表学报, 2018, 39(3): 207- 214.LI P H, WANG L Y, LIU Y T, et al. Study on EEG rhythm features of lower limb motor imagery and motor performance[J]. Chinese Journal of Scientific Instrument, 2018, 39(3):207- 214.
    [12] VILLIGER M, HEPPREYMOND M C, KIPER D, et al. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements[J]. Plos One, 2013(8):e72403.
    [13] 明东, 王坤, 何峰, 等. 想象动作诱发生理信息检测及其应用研究:回顾与展望[J]. 仪器仪表学报, 2014, 35(9):1921- 1931.MING D, WANG K, HE F, et al. Study on physiological information detection and application evoked by motor imagery: Review and prospect[J]. Chinese Journal of Scientific Instrument, 2014, 35(9):1921- 1931.
    [14] JAHANSHAHI M, HALLETT M. The Bereitschaftspotential[M]. New York: Springer US, 2003.
    [15] DO NASCIMENTO O F,NIELSEN K D,VOIGT M. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions[J]. Experimental Brain Research, 2006, 171(1):78- 90.
    [16] SHIBASAKI H, HALLETT M. What is the Bereitschaftspotential? [J]. Clinical Neurophysiology, 2006, 117(11):2341- 2356.
    [17] SMULDERS F T Y, MILLER J O. The Oxford Handbook of Event-Related Potential Components[M]. Oxford: Oxford University Press, 2012: 209- 229.
    [18] DI R F, PITZALIS S, APRILE T, et al. Effect of practice on brain activity: An investigation in top-level rifle shooters[J]. Medicine & Science in Sports & Exercise, 2005, 37(9):1586- 1593.
    [19] NIAZI I K, JIANG N, TIBERGHIEN O, et al. Detection of movement intention from single-trial movement-related cortical potentials[J]. Journal of Neural Engineering, 2011, 8(6):66009.
    [20] JOCHUMSEN M, NIAZI I K, TAYLOR D, et al. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG[J]. Journal of Neural Engineering, 2015, 12(5):56013.
    [21] 奕伟波. 基于复合肢体想象动作的脑电特征识别技术研究[D]. 天津:天津大学, 2012.YI W B. Research on EEG feature recognition technique based on compound-limbs motor imagery[D]. Tianjin: Tianjin University, 2012.
    [22] PFURTSCHELLER G, BRUNNER C, SCHL?GL A, et al. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks[J]. Neuroimage, 2006, 31(1):153.
    [23] PFURTSCHELLER G, LOPES D S F H. Event-related EEG/MEG synchronization and desynchronization: Basic principles [J]. Clinical Neurophysiology,1999, 110(11): 1842- 1857.
    [24] ZHUANG P, TORO C, GRAFMAN J, et al. Event-related desynchronization (ERD) in the alpha frequency during development of implicit and explicit learning[J]. Electroencephalography & Clinical Neurophysiology, 1997, 102(4):374- 381.
    [25] ZhOU Z X, WAN B K, MING D, et al. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action[J]. Journal of Neural Engineering, 2010, 7(4):46008.
    [26] YI W, QIU S, WANG K, et al. EEG oscillatory patterns and classification of sequential compound limb motor imagery[J]. Journal of Neuroengineering & Rehabilitation, 2016, 13(1):1- 12.
    [27] NAGAMINE T, KAJOLA M, SALMELIN R, et al. Movement-related slow cortical magnetic fields and changes of spontaneous MEG-and EEG-brain rhythms[J]. Electroencephalography & Clinical Neurophysiology, 1996, 99(3):274- 286.
    [28] SOLODKIN A, HLUSTIK P, CHEN E E, et al. Fine modulation in network activation during motor execution and motor imagery[J]. Cerebral Cortex, 2004, 14(11):1246- 1255.
    [29] FRAK V, PAULIGNAN Y, JEANNEROD M. Orientation of the opposition axis in mentally simulated grasping[J]. Experimental Brain Research, 2001, 136(1):120- 127.
    [30] JEANNEROD M. The representing brain: Neural correlates of motor intention and imagery[J]. Behavioral & Brain Sciences, 1994, 17(2):187- 202.
    [31] DECETY J, JEANNEROD M, PRABLANC C. The timing of mentally represented actions[J]. Behavioural Brain Research, 1989, 34(1):35- 42.
    [32] CERRITELLI B, MARUFF P, WILSON P, et al. The effect of an external load on the force and timing components of mentally represented actions[J]. Behavioural Brain Research, 2000, 108(1):91- 96.
    [33] DECETY J, MICHEL F. Comparative analysis of actual and mental movement times in two graphic tasks[J]. Brain and Cognition, 1989, 11(1):87- 97.
    [34] PAPAXANTHIS C, POZZO T, SKOURA X, et al. Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task[J]. Behavioural Brain Research, 2002, 134(1- 2):0- 215.
    [35] ORLIAGUET J P, COELLO Y. Differences between actual and imagined putting movements in golf: A chronometric analysis[J]. International Journal of Sport Psychology, 1998, 29(2):157- 169.
    [36] MUNZERT J. Does level of expertise influence imagined durations in open skills? Played versus imagined durations of badminton sequences[J]. International Journal of Sport & Exercise Psychology, 2008, 6(1):24- 38.
    [37] CALMELS C, FOURNIER J F. Duration of physical and mental execution of gymnastic routines[J]. Sport Psychologist, 2010, 15(2):142- 150.
    [38] KRAEUTNER S, GIONFRIDDO A, BARDOUILLE T, et al. Motor imagery-based brain activity parallels that of motor execution: Evidence from magnetic source imaging of cortical oscillations[J]. Brain Research, 2014(1588): 81- 91.
    [39] KASESS C H, WINDISCHBERGER C, CUNNINGTON R, et al. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling[J]. Neuroimage, 2008, 40(2):828- 837.
    [40] DEIBER M P, IBA?EZ V, SADATO N, et al. Cerebral structures participating in motor preparation in humans: A positron emission tomography study[J]. Journal of Neurophysiology, 1996, 75(1):233- 247.
    [41] STEPHAN K M, FINK G R, PASSINGHAM R E, et al. Functional anatomy of the mental representation of upper extremity movements in healthy subjects[J]. Journal of Neurophysiology, 1995, 73(1):373- 386.
    [42] CALDARA R, DEIBER M P, ANDREY C, et al. Actual and mental motor preparation and execution: A spatiotemporal ERP study[J]. Experimental Brain Research, 2004, 159(3):389- 399.
    [43] BATULA A M, MARK J A, KIM Y E, et al. Comparison of brain activation during motor imagery and motor movement using fNIRS[J]. Computational Intelligence and Neuroscience, 2017(23):5491296.
    [44] AHMADIAN P, SANEI S, ASCARI L, et al. Constrained blind sour extraction of readiness potentials from EEG[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2013, 21(4):567- 575.
    [45] XIAO R, DING L. EEG resolutions in detecting and decoding finger movements from spectral analysis[J].Neuroscience, 2015, 9(8):00308.
    [46] LEW E, CHAVARRIAGA R, SILVONI S, et al. Detection of self-paced reaching movement intention from EEG signals[J]. Frontiers in Neuroengineering, 2012, 5(13):00013.
    [47] LEW E, CHAVARRIAGA R, ZHANG H, et al. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG[C]. IEEE Engineering in Medicine & Biology Society Conference, 2012:3280- 3283.
    [48] XU R, JIANG N, LIN C, et al. Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2):288- 296.
    [49] JOCHUMSEN M, NIAZI I K, MRACHACZKERSTING N, et al. Detection and classification of movement-related cortical potentials associated with task force and speed[J]. Journal of Neural Engineering, 2013, 10(5):56015.
    [50] JOCHUMSEN M, NIAZI I K, MRACHACZKERSTING N, et al. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients[J]. Journal of Neural Engineering, 2015, 12(5):56003.
    [51] IOANA S A, LUIS M, CANO D L C R, et al. Detecting intention to walk in stroke patients from pre-movement EEG correlates[J]. Journal of Neuroengineering & Rehabilitation, 2015, 12(1):113.
    [52] SBURLEA A I, MONTESANO L, MINGUEZ J. Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration[J]. Journal of Neural Engineering, 2015, 12(3):36007.
    [53] GROSSEWE-NTRUP M, MATTIA D, OWEISS K. Using brain-computer interfaces to induce neural plasticity and restore function[J]. Journal of Neural Engineering, 2011, 8(2):25004.
    [54] CHIN Z Y, ANG K K, WANG C, et al. Multi-class filter bank common spatial pattern for four-class motor imagery BCI[C]. International Conference of the IEEE Engineering in Medicine & Biology Society, 2009:571- 574.
    [55] XYGONAKIS I, ATHANASIOU A, PANDRIA N, et al. Decoding motor imagery through common spatial pattern filters at the EEG source space[J]. Computational Intelligence and Neuroscience, 2018:1- 10.
    [56] LUO T J, ZHOU C L, CHAO F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network[J]. BMC Bioinformatics, 2018, 19(1):344.
    [57] 李明爱, 张梦, 孙炎珺. 基于小波包和深度信念网络的脑电特征提取方法[J]. 电子测量与仪器学报, 2018, 32(1):111- 118.LI M AI, ZHANG M, SUN Y J. EEG feature extraction method based on wavelet packet and deep belief network[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(1):111- 118.
    [58] ZHOU J, YAO J, DENG J, et al. EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects[J]. Computers in Biology & Medicine, 2009, 39(5):443- 452.
    [59] MOHAMED A K, MARWALA T, JOHN L R. Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI[C]. International Conference of the IEEE Engineering in Medicine & Biology Society, 2011:6289- 6293.
    [60] YONG X, MENON C. EEG Classification of different imaginary movements within the same limb[J]. Plos One, 2015, 10(4):e121896.
    [61] TAVAKOLAN M, MENON C. Classification of same arm movements using different kernels learning support vector machine[C]. Electrical and Computer Engineering, 2016:1- 4.
    [62] MILLER K J, ZANOS S, FETZ E E, et al. Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2009, 29(10):3132- 3137.
    [63] XIAO R, DING L. Evaluation of EEG features in decoding individual finger movements from one hand[J]. Computational and Mathematical Methods in Medicine, 2013, 2013(29):243257.
    [64] LIAO K, XIAO R, GONZALEZ J, et al. Decoding individual finger movements from one hand using human EEG signals[J]. Plos One, 2014, 9(1):e85192.
    [65] STANKEVICH L A, SONKIN K M, SHEMYAKINA N V, et al. EEG Pattern decoding of rhythmic individual finger imaginary movements of one hand[J]. Human Physiology, 2016, 42(1):32- 42.
    [66] SHEN G, ZHANG J, WANG M, et al. Decoding the individual finger movements from single‐trial functional magnetic resonance imaging recordings of human brain activity[J]. European Journal of Neuroscience, 2014, 39(12): 2071- 2082.
    [67] MALESEVIC N, MARKOVIC D, KANITZ G, et al. Decoding of individual finger movements from surface EMG signals using vector autoregressive hierarchical hidden Markov models (VARHHMM) [C]. International Conference on Rehabilitation Robotics, 2017:1518- 1523.
    [68] JOCHUMSEN M, NIAZI I K, DREMSTRUP K, et al. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation[J]. Medical & Biological Engineering & Computing, 2015, 54(10):1- 11.
    [69] SCHWARZ A, OFNER P, PEREIRA J, et al. Decoding natural reach-and-grasp actions from human EEG[J]. Journal of Neural Engineering, 2018, 15(1):016005.
    [70] EDELMAN B J, BAXTER B, HE B. EEG source imaging enhances the decoding of complex right-hand motor imagery tasks[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(1):4- 14.
    [71] NG A K, KAI K A, TEE K P, et al. Optimizing low-frequency common spatial pattern features for multi-class classification of hand movement directions[C]. Engineering in Medicine and Biology Society, 2013: 2780- 2783.
    [72] ROBINSON N, GUAN C, VINOD A P, et al. Multi-class EEG classification of voluntary hand movement directions[J]. Journal of Neural Engineering, 2013, 10(5):56018.
    [73] SUN Y, ZENG H, SONG A, et al. Investigation of the phase feature of low-frequency electroencephalography signals for decoding hand movement parameters[C].IEEE International Conference on Systems, Man, and Cybernetics, 2017:2312- 2316.
    [74] ROBINSON N, VINOD A P, ANG K K, et al. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(8):2123- 2132.
    [75] GU Y, DREMSTRUP K, FARINA D. Single-trial discrimination of type and speed of wrist movements from EEG recordings[J]. Clinical Neurophysiology,2009, 120(8):1596- 1600.
    [76] LV J, LI Y, GU Z. Decoding hand movement velocity from electroencephalogram signals during a drawing task[J]. Biomedical Engineering Online, 2010, 9(1):64- 64.
    [77] FU Y, XU B, LI Y, et al. Single-trial decoding of imagined grip force parameters involving the right or left hand based on movement-related cortical potentials[J]. Science Bulletin, 2014, 59(16):1907- 1916.
    [78] XU B L, FU Y F, SHI G, et al. Identification of motor imagery parameters from EEG using SVM[C]. International Conference on Information Technology and Computer Application Engineering.2013:319- 322.
    [79] WANG K, WANG Z, GUO Y, et al. A brain-computer interface driven by imagining different force loads on a single hand: An online feasibility study[J]. Journal of Neuroengineering & Rehabilitation, 2017, 14(1):93.
    [80] YEOM H G, KIM J S, CHUNG C K. Estimation of the velocity and trajectory of three-dimensional reaching movements from non-invasive magnetoencephalography signals[J]. Journal of Neural Engineering, 2013, 10(2): 26006.
    [81] HONG G Y, HONG W, KANG D Y, et al. A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography [J]. Biomed Research International, 2014(6):176857.
    [82] KORIK A, SOSNIK R, SIDDIQUE N, et al. Imagined 3D hand movement trajectory decoding from sensorimotor EEG rhythms[C]. IEEE International Conference on Systems, Man, and Cybernetics, 2016:4591- 4596.
    [83] YIN X, XU B, JIANG C, et al. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching[J]. Journal of Neural Engineering, 2015, 12(3):36004.
    [84] BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018(555):657- 661.
    [85] PENALOZA C I, NISHIO S. BMI control of a third arm for multitasking[J]. Science Robotics, 2018, 3(20):t1228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700