偶极玻色-爱因斯坦凝聚体在类方势阱中的Bénard-von Kármán涡街
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bénard-von Kármán vortex street in dipolar Bose-Einstein condensate trapped by square-like potential
  • 作者:席忠红 ; 杨雪滢 ; 唐娜 ; 宋琳 ; 李晓霖 ; 石玉仁
  • 英文作者:Xi Zhong-Hong;Yang Xue-Ying;Tang Na;Song Lin;Li Xiao-Lin;Shi Yu-Ren;College of Physics and Electronic Engineering, Northwest Normal University;Key Laboratory of Atomic and Molecular Physics and Functional Material of Gansu Province;College of Physics and Hydropower Engineering, Gansu Normal University for Nationalities;
  • 关键词:偶极玻色-爱因斯坦凝聚体 ; 类方势阱 ; Bénard-von ; Kármán涡街
  • 英文关键词:dipolar Bose-Einstein condensate;;square-like potential;;von Kármán vortex street
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北师范大学物理与电子工程学院;甘肃省原子分子物理与功能材料重点实验室;甘肃民族师范学院物理与水电工程系;
  • 出版日期:2018-12-08
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11565021,11047010);; 西北师范大学青年教师科研能力提升计划(批准号:NWNU-LKQN-16-3);; 甘肃民族师范学院学术带头人、双骨干项目建设计划(批准号:GSNU-SHGG-1806);甘肃民族师范学院校长基金(批准号:GSNUXM16-44)资助的课题~~
  • 语种:中文;
  • 页:WLXB201823002
  • 页数:7
  • CN:23
  • ISSN:11-1958/O4
  • 分类号:17-23
摘要
对偶极玻色-爱因斯坦凝聚体(Bose-Einstein condensate, BEC)在类方势阱中的Bénard-von Kármán涡街现象进行了数值研究.结果表明,当障碍势在BEC中的运动速度与尺寸在适当范围内时,系统中会出现稳定的两列涡旋对阵列,即Bénard-von Kármán涡街.研究了偶极相互作用强弱、障碍势尺寸以及运动速度对尾流中产生的涡旋结构的影响,得到了相图结构.对障碍势所受拖拽力进行计算,分析了涡旋对产生的力学机理.
        Bénard-von Kármán vortex street in dipolar Bose-Einstein Condensate(BEC) trapped by a square-like potential is investigated numerically. In the frame of mean-field theory, the nonlinear dynamic of the dipolar BEC can be described by the so-called two-dimensional Gross-Pitaevskii(GP) equation with long-range interaction. In this paper, we only consider the case that all the dipoles are polarized along the z-axis, which is perpendicular to the plane of disc-shaped BEC. Firstly, the stationary state of the BEC is obtained by the imaginary-time propagation approach. Secondly, the nonlinear dynamic of the BEC, when a moving Gaussian potential exists in such a system, is numerically investigated by the time-splitting Fourier spectral method, in which the stationary state obtained before is set to be the initial state.The results show that when the velocity of the cylindrical obstacle potential reaches a critical value, which depends on interaction strength and the shape of the potential, the vortex-antivortex pairs will be generated alternately in the superflow behind the obstacle potential. However, in general, such a vortex-antivortex pair structure is dynamically unstable.When the velocity of the obstacle potential increases to a certain value and for a suitable potential width, a stable vortex structure called Bénard-von Kármán vortex street will be formed. While this phenomenon emerges, the vortices in pairs created by the obstacle potential have the same circulation. The pairs with opposite circulations are alternately released from the moving obstacle potential. For larger potential width and velocity, the shedding pattern becomes irregular.We also numerically investigate the effects of the dipole interaction strength, the width and the velocity of the obstacle potential on the vortex structures arising in the wake flow. As a result, the phase graph is presented by lots of numerical calculations for a group of given physical parameters. Thirdly, the drag force on the obstacle potential is also calculated and the mechanical mechanism of vortex pair is analyzed. Finally, we discuss how to find the phenomenon of Bénard-von Kármán vortex street in dipolar BEC experimentally.
引文
[1] Wang D S, Song S W, Xiong B, Liu W M 2011 Phys.Rev. A 84 053607
    [2] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev.Lett. 101 010402
    [3] Abrikosov A A, Eksp Z 1957 Phys. JETP 5 1174
    [4] Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001Sci. 292 476
    [5] Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435
    [6] Bénard H, Acad C R 1908 Science 147 839
    [7] von Kármán T, Gottingen N G W 1911 Math. Phys. Kl.509 721
    [8] Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477
    [9] Barenghi C F 2008 Physica D 237 2195
    [10] Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2016Phys. Rev. Lett. 24 117
    [11] Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104150404
    [12] Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014Phys. Rev. A 90 063627
    [13] Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92033613
    [14] Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 91053615
    [15] Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. A 83033602
    [16] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett.102 185301
    [17] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett.94 050402
    [18] Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett.102 023602
    [19] Yi S, You L 2000 Phys. Rev. A 61 041604
    [20] Marinescu M, You L 1998 Phys. Rev. Lett. 81 4596
    [21] Deb B, You L 2001 Phys. Rev. A 64 022717
    [22] Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev.A 82 043623
    [23] Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102050401
    [24] Giovanazzi S, Gorlitz A, Pfau T 2002 Phys. Rev. Lett.89 130401
    [25] Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404
    [26] Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219836
    [27] Bao W, Wang H 2006 J. Comput. Phys. 217 612
    [28] Mou S, Guo K X, Xiao B 2014 Superlattices Microstruct.65 309
    [29] Finne A P, Araki T, Blaauwgeers R, Eltsov V B, Kopnin N B, Kruslus M, Skrbek L, Tsubota M, Volovikand G E2003 Nature 424 1022
    [30] Nore C, Huepe C, Brachet M E 2000 Phys. Rev. Lett.84 2191
    [31] Volovik G E 2003 JETP Lett. 78 533
    [32] Inouye S, Gupta S, Rosenband T, Chikkatur A P, orlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E,Ketterle W 2001 Phys. Rev. Lett. 87 080402
    [33] Neely T W, Samson E C, Bradley A S, Davis M J 2010Phys. Rev. Lett. 104 160401
    [34] Stagg G W, Allen A J, Barenghi C F, Parker N G 2015J. Phys.:Conf. Ser. 594 012044
    [35] Reeves M T, Anderson B P, Bradley A S 2012 Phys.Rev. A 86 053621
    [36] Kadokura T, Yoshida J, Saito H 2014 Phys. Rev. A 90013612

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700