新型高性能镍基粉末高温合金拉伸变形行为和机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation Behavior and Mechanisms of Tensile in A Advanced High-performance Nickel-Based PM Superalloy
  • 作者:黄海亮 ; 刘国权 ; 王浩 ; 胡本芙
  • 英文作者:Huang Hailiang;Liu Guoquan;Wang Hao;Hu Benfu;School of Materials Science and Engineering, University of Science and Technology Beijing;Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing;
  • 关键词:镍基粉末高温合金 ; 位错 ; 层错 ; 形变孪晶 ; 变形行为
  • 英文关键词:Ni-based PM superalloy;;dislocation;;stacking fault;;deformation twins;;deformation behavior
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:北京科技大学材料科学与工程学院;北京科技大学钢铁共性技术协同创新中心;
  • 出版日期:2019-04-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.393
  • 基金:国家重点研发计划(2016YFB0700501);; 国家自然科学基金(51571020)
  • 语种:中文;
  • 页:COSE201904017
  • 页数:6
  • CN:04
  • ISSN:61-1154/TG
  • 分类号:118-123
摘要
采用SEM和TEM研究了室温(23℃)和中温(650、750、815℃)下第3代镍基粉末高温合金(FGH98)拉伸变形显微组织、行为和机制。结果表明:含有多模尺寸分布γ′相的合金具有优良的拉伸性能,室温拉伸主要变形机制为位错剪切γ′相形成层错,并在γ′相周围形成位错环,阻碍后续位错运动。中温拉伸变形机制为位错剪切γ′相形成层错和形变孪晶,随着变形温度的升高,形变孪晶增多。给出了a/3<112>不全位错剪切γ′相形成层错和形变孪晶共存的模型,随着应变量的增加,在连续相邻的{111}滑移面上层错堆积变多,促进连续孪晶的形成,协调了γ和γ′相两相之间的变形,有助于释放两相之间的变形应力和提高合金强韧性。
        The deformation microstructures, deformation behavior and mechanisms of FGH98 after tensile tests at room temperature(23 °C) and intermediate temperatures(650, 750, 815 °C) were investigated by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that FGH98 alloy, with multi-mode size distribution γ′ phase, obtains excellent tensile properties at room temperature and intermediate temperature. The dislocations shear γ′ phase, forming stacking fault(SF) in the γ′precipitate and a dislocation loop around the γ′ precipitate, which is the dominant deformation mechanism during the tensile deformation at room temperature. The dislocation loop hinders the subsequent dislocation movement. However, forming SFs and deformation twins by dislocations shearing γ′ phase becomes the dominant deformation mechanisms at intermediate temperatures. With the increasing of the deformation temperature, the deformation mechanisms transfer from SFs to deformation twins, and the density of twins increases. The model of a/3<112> partial shearing the γ′ precipitate forming stacking faults and twins was given. With the increase of strain, the stacking faults accumulate on the adjacent {111} planes, promoting the formation of continuous twins. The formation of continuous twins can coordinate the deformation between the γ and γ′ phase and release the deformation stress, resulting in enhancement of the alloy plasticity.
引文
[1]Gessinger G H,Bomford M J.International Metallurgical Reviews[J],1974,19(1):51
    [2]Kozar R W,Suzuki A,Milligan W W et al.Metallurgical and Materials Transactions A[J],2009,40(7):1588
    [3]Kovarik L,Unocic R R,Li Ju et al.Progress in Materials Science[J],2009,54(6):839
    [4]Sun Y Q,Hazzledine P M.Philosophical Magazine A[J],1988,58(4):603
    [5]Yuan Y,Gu Y F,Osada T et al.Scripta Materialia[J],2012,67(2):137
    [6]Qiu Chunlei,Wu Xinhua,Mei Junfa et al.Journal of Alloys and Compounds[J],2013,578:454
    [7]Tian Chenggang,Han Guoming,Cui Chuanyong et al.Materials&Design[J],2015,88:123
    [8]Francis E M,Grant B M B,da Fonseca J Q et al.Acta Materialia[J],2014,74:18
    [9]Grant B M B,Francis E M,da Fonseca J Q et al.Materials Science and Engineering A[J],2013,573:54
    [10]Mukherji D,Jiao F,Chen W et al.Acta Metallurgica et Materialia[J],1991,39(7):1515
    [11]Grant B M B,Francis E M,da Fonseca J Q et al.Acta Materialia[J],2012,60(19):6829
    [12]Jia Jian,Tao Yu,Zhang Yiwen et al.Rare Metals[J],2009,28:136
    [13]Huang G C,Liu G Q,Feng M N et al.Journal of Alloys and Compounds[J],2018,747:1062
    [14]Exner H E.International Metallurgical Reviews[J],1972,17(1):25
    [15]Reppich B,Schepp P,Wehner G.Acta Metallurgica[J],1982,30(1):95
    [16]Condat M,Décamps B.Scripta Metallurgica[J],1987,21(5):607
    [17]Milligan W W,Antolovich S D.Metallurgical Transactions A[J],1991,22(10):2309
    [18]Decamps B,Raujol S,Coujou A et al.Philosphical Magazine[J],2004,84(1):91
    [19]Locq D,Caron P,Raujol S et al.Superalloys 2004[C].Pennsylvania:TMS,2004:179
    [20]Unocic R R,Zhou N,Kovarik L et al.Acta Materialia[J],2011,59(19):7325
    [21]Knowles D M,Chen Q Z.Materials Science and Engineering A[J],2003,340(1-2):88
    [22]Mahajan S,Chin G Y.Acta Metallurgica[J],1973,21(10):1353
    [23]Pirouz P.Scripta Metallurgica[J],1987,21(11):1463
    [24]Kear B H,Oblak J M.Le Journal de Physique Colloques[J],1974,35(12):7
    [25]Reed R C.The Superalloys Fundamentals and Applications[M].New York:Cambridge University Press,2006:91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700