W_2C/AC催化快速热解松木磨木木质素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fast catalytic pyrolysis of pine milled wood lignin with W_2C/AC
  • 作者:陆强 ; 李文涛 ; 叶小宁 ; 郭浩强 ; 董长青
  • 英文作者:LU Qiang;LI Wentao;YE Xiaoning;GUO Haoqiang;DONG Changqing;National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University;
  • 关键词:W2C/AC ; 催化 ; 热解 ; 磨木木质素 ; 加氢脱氧 ; Py-GC/MS
  • 英文关键词:W2C/AC;;catalysis;;pyrolysis;;MWL;;hydrodeoxygenation;;Py-GC/MS
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:华北电力大学生物质发电成套设备国家工程实验室;
  • 出版日期:2016-08-25 10:58
  • 出版单位:化工学报
  • 年:2016
  • 期:v.67
  • 基金:国家自然科学基金项目(51576064);; 中央高校基本科研业务费专项资金项目(2016YQ05,2016MS55)~~
  • 语种:中文;
  • 页:HGSZ201611038
  • 页数:8
  • CN:11
  • ISSN:11-1946/TQ
  • 分类号:328-335
摘要
以活性炭(AC)为载体制备了不同钨负载量的W_2C/AC催化剂,将其和松木磨木木质素(MWL)机械混合后进行Py-GC/MS(快速热解-气相色谱/质谱联用)实验,考察了钨负载量、催化剂/MWL比例对产物分布的影响,并通过外标法对主要产物(芳烃类和酚类)的真实产率进行了定量分析。结果表明,W_2C/AC催化剂可有效促进木质素的热解解聚生成单酚类产物,并对酚类产物具有脱羰基、脱甲氧基、脱羟基以及加氢的效果,从而促进稳定的酚类产物(不含羰基、甲氧基和不饱和碳碳双键)和芳烃类产物的生成。在4种W2C/AC催化剂中,10%-W2C/AC的催化效果最佳,在催化剂/MWL比例为5时热解产物总产率达到最大值,此时芳烃类和酚类产物的总产率由无催化剂时的21.2 mg·g~(-1)和151.0 mg·g~(-1)增加至102.1 mg·g~(-1)和191.1 mg·g~(-1)。
        W2C/AC catalysts with different tungsten loadings were prepared by using the activated carbon(AC) as the carrier. These catalysts were mechanically mixed with the pine milled wood lignin(MWL) for Py-GC/MS(pyrolysis-gas chromatography/mass spectrometry) experiments to investigate the catalytic effects of tungsten loading and catalyst-to-MWL ratio on the distribution of pyrolytic products. Moreover, the actual yields of major pyrolytic products(aromatic hydrocarbons and phenolics) were quantitatively determined by the external standard method. The results indicated that the W_2C/AC catalyst could promote the pyrolytic depolymerization of MWL to generate momocyclic phenolic compounds. Furthermore, it could catalyze the decarbonylation, demethoxylation, dehydroxylation and hydrogenation reactions of phenolic compounds to form stable phenolics(without the carbonyl group, methoxyl group and unsaturated C C bond) and aromatic hydrocarbons. Among the four W_2C/AC catalysts, the 10%-W_2C/AC possessed the best catalytic capability. The maximal yield of total pyrolytic products was obtained at the catalyst-to-MWL ratio of 5, and the total yields of aromatic hydrocarbons and phenolics at this condition reached 102.1 mg·g~(-1) and 191.1 mg·g~(-1), compared with the values of 21.2 mg·g~(-1)and 151.0 mg·g~(-1) in the absence of the catalyst.
引文
[1]LU Q,LI W Z,ZHU X F.Overview of fuel properties of biomass fast pyrolysis oils[J].Energy Conversion and Management,2009,50(5):1376-1383.
    [2]陈磊,陈汉平,陆强,等.木质素结构及热解特性研究[J].化工学报,2014,65(9):3626-3633.CHEN L,CHEN H P,LU Q,et al.Characterization of structure and pyrolysis behavior of lignin[J].CIESC Journal,2014,65(9):3626-3633.
    [3]SCHOLZE B,MEIER D.Characterization of the water-insoluble fraction from pyrolysis oil(pyrolytic lignin)(Ⅰ):PY-GC/MS,FTIR,and functional groups[J].Journal of Analytical and Applied Pyrolysis,2001,60(1):41-54.
    [4]LU Q,ZHANG Y,TANG Z,et al.Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J].Fuel,2010,89(8):2096-2103.
    [5]PENG C N,ZHANG G Y,YUE J R,et al.Pyrolysis of lignin for phenols with alkaline additive[J].Fuel Processing Technology,2014,124:212-221.
    [6]MANTE O D,RODRIGUEZ J A,BABU S P.Selective defunctionalization by Ti O2 of monomeric phenolics from lignin pyrolysis into simple phenols[J].Bioresource Technology,2013,148(7):508-516.
    [7]王芸,邵珊珊,张会岩,等.生物质模化物催化热解制取烯烃和芳香烃[J].化工学报,2015,66(8):3022-3028.WANG Y,SHAO S S,ZHANG H Y,et al.Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J].CIESC Journal,2015,66(8):3022-3028.
    [8]LU Q,TANG Z,ZHANG Y,et al.Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts[J].Industrial&Engineering Chemistry Research,2010,49(6):2573-2580.
    [9]ZHANG Z B,LU Q,YE X N,et al.Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass[J].Journal of Analytical and Applied Pyrolysis,2015,115:307-315.
    [10]TALUKDAR A K,BHATTACHARYYA K G,SIVASANKER S.Hydrogenation of phenol over supported platinum and palladium catalysts[J].Applied Catalysis A:General,1993,96(2):229-239.
    [11]DWIATMOKO A A,ZHOU L P,KIM I,et al.Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J].Catalysis Today,2015,265:192-198.
    [12]SUN J,ZHENG M Y,WANG X D,et al.Catalytic performance of activated carbon supported tungsten carbide for hydrazine decomposition[J].Catalysis Letters,2008,123(1/2):150-155.
    [13]HUANG Y B,CHEN M Y,YAN L,et al.Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules[J].Chem Sus Chem,2014,7(4):1068-1072.
    [14]JI N,ZHANG T,ZHENG M Y,et al.Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J].Angewandte Chemie,2008,120(44):8638-8641.
    [15]CHEN Y X,ZHENG Y,LI M,et al.Arene production by W2C/MCM-41-catalyzed upgrading of vapors from fast pyrolysis of lignin[J].Fuel Processing Technology,2015,134:46-51.
    [16]WEN J L,SUN S L,XUE B L,et al.Quantitative structural characterization of the lignins from the stem and pith of bamboo(Phyllostachys pubescens)[J].Holzforschung,2013,67(6):613-627.
    [17]LIANG C H,TIAN F P,LI Z L,et al.Preparation and adsorption properties for thiophene of nanostructured W2C on ultrahighsurface-area carbon materials[J].Chemistry of Materials,2003,15(25):4846-4853.
    [18]SINGLA G,SINGH K,PANDEY O P.Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural,thermal and electrocatalytic properties[J].International Journal of Hydrogen Energy,2015,40(16):5628-5637.
    [19]HU L H,JI S F,XIAO T C,et al.Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica[J].The Journal of Physical Chemistry B,2007,111(14):3599-3608.
    [20]BU Q,LEI H W,WANG L,et al.Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J].Bioresource Technology,2014,162:142-147.
    [21]PANDEY M P,KIM C S.Lignin depolymerization and conversion:a review of thermochemical methods[J].Chem.Eng.Technol.,2011,34:29-41.
    [22]HOSOYA T,KAWAMOTO H,SAKA S.Solid/liquid-and vapor-phase interactions between cellulose-and lignin-derived pyrolysis products[J].Journal of Analytical and Applied Pyrolysis,2009,85:237-246.
    [23]BAI X L,KIM K H,BROWN R C,et al.Formation of phenolic oligomers during fast pyrolysis of lignin[J].Fuel,2014,128:170-179.
    [24]KOTAKE T,KAWAMOTO H,SAKA S.Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin[J].Journal of Analytical and Applied Pyrolysis,2014,105:309-316.
    [25]ASMADI M,KAWAMOTO H,SAKA S.The effects of combining guaiacol and syringol on their pyrolysis[J].Holzforschung,2012,66:323-330.
    [26]ZHOU S,GARCIA-PEREZ M,PECHA B,et al.Effect of the fast pyrolysis temperature on the primary and secondary products of lignin[J].Energ.Fuel,2013,27:5867-5877.
    [27]CHRISTENSEN K O,CHEN D,L?DENG R,et al.Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J].Applied Catalysis A:General,2006,314(1):9-22.
    [28]CARLSON T R,JAE J,LIN Y C,et al.Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J].Journal of Catalysis,2010,270(1):110-124.
    [29]ZHENG M Y,WANG A Q,JI N,et al.Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J].Chem Sus Chem,2010,3(1):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700