对接粘接结构的扭转疲劳损伤行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints Under Torsion Cyclic
  • 作者:李慧 ; 张军 ; 李海宇 ; 申浩中
  • 英文作者:Li Hui;Zhang Jun;Li Haiyu;Shen Haozhong;School of Chemical Engineering and Energy,Zhengzhou University;
  • 关键词:对接粘接结构 ; 单轴棘轮 ; 扭转循环 ; 疲劳寿命
  • 英文关键词:adhesively bonded butt-joints;;uniaxial ratchetting;;cyclic torsion;;fatigue life
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:郑州大学化工与能源学院;
  • 出版日期:2019-06-03
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.344
  • 基金:国家自然科学基金资助项目(10972200);; 河南省自然科学基金资助项目(144300510008);; 河南省教育厅重点资助项目(15A130004)~~
  • 语种:中文;
  • 页:TJDX201908008
  • 页数:7
  • CN:08
  • ISSN:12-1127/N
  • 分类号:62-68
摘要
通过圆柱对接试件的扭转疲劳实验,分析了平均剪应力、剪应力幅值和循环周期3个因素对粘接结构的应变变程、应变率和疲劳寿命的影响.结果表明:平均剪应力对粘接结构的循环加载应力-应变响应影响很大.在平均剪应力非零的情况下,有棘轮应变出现,并且棘轮应变随着平均剪应力的增加而增加,棘轮应变率也随之增加;在改变剪应力幅值,而平均剪应力为零的情况下,虽然粘接试件没有出现棘轮效应,但由于循环蠕变和循环软化的原因,循环加载的应力-应变的曲线斜率随着剪应力幅值的增加出现下降的趋势,剪应力幅值增加,应变变程也随之增加,同时剪应力幅值越高应变稳定期越短;在改变循环周期情况下,应变变程影响不大,只是随着循环周期的缩短,后期的循环软化略有增加;在疲劳寿命影响方面,随着平均剪应力和剪应力幅值的增加,疲劳寿命都明显下降,但循环周期对粘接试件的扭转疲劳寿命的影响不大.
        The fatigue failure behaviors of adhesively bonded hollow cylindrical butt-joints were experimentally investigated. The effects of shear stress amplitude, mean shear stress, and cycle time on the strain variation response,strain rate, and fatigue life of adhesively bonded butt-joints were analyzed. Results showed that mean shear stress had a considerable influence on the stress-strain curve of cyclic loading. Ratchetting strain appeared when mean shear stress was nonzero. Ratchetting strain and ratchetting strain rate increased with the increase of mean shear stress.Ratchetting strain did not appear in the adhesive specimens when shear stress amplitude varied and the mean shear stress was zero. The slope of the stress-strain curve tended to decline with the increase of shear stress amplitude due to cyclic creep and cyclic softening. Additionally, the strain variations increased with the increase of shear stress amplitude. Meanwhile, the steady state stage of strain variations shortened as shear stress amplitude increased. However,cycle time had a negligible effect on strain variations. Softening in the later stages slightly increased as the cycle shortened. Fatigue life decreased with the increase of average shear stress and shear stress amplitude. However, cycling time had a limited effect on the torsion fatigue life of the adhesively bonded butt-joint specimens.
引文
[1]刘成伦,徐锋.胶黏剂的研究进展[J].表面技术,2004,33(4):1-3.Liu Chenglun,Xu Feng.Research development of the adhesive[J].Surface Technology,2004,33(4):1-3(in Chinese).
    [2]翁熙祥,梁志杰.金属粘接技术[M].北京:化学工业出版社,2006.Weng Xixiang,Liang Zhijie.Metal Adhesion Technology[M].Beijing:Chemical Industry Press,2006(in Chinese).
    [3]陶士振.两种车用粘接剂相对不同基材粘接性能的研究[D].长春:吉林大学,2016.Tao Shizhen.Study on Adhesion Properties of two Kinds of Vehicle Adhesives with Different Substrates[D].Changchun:Jilin University,2016(in Chinese).
    [4]周剑,刘勇琼,廖英强.炭纤维复合材料疲劳行为的研究进展[J].炭素技术,2018,27(1):6-8.Zhou Jian,Liu Yongqiong,Liao Yingqiang.Research progress on fatigue behaviour of carbon fiber reinforced polymer[J].Carbon Techniques,2018,27(1):6-8(in Chinese).
    [5]Tao G,Xia Z.Ratcheting behavior of an epoxy polymer and its effect on fatigue life[J].Polymer Testing,2007,26(4):451-460.
    [6]Tao G,Xia Z.Mean stress/strain effect on fatigue behavior of an epoxy resin[J].International Journal of Fatigue,2007,29(12):2180-2190.
    [7]Tao G,Xia Z.Fatigue behavior of an epoxy polymer subjected to cyclic shear loading[J].Materials Science&Engineering A,2008,486(1/2):38-44.
    [8]Wang Z,Xu L,Sun X,et al.Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires[J].Composite Structures,2017,178:311-319.
    [9]Gao H,Wang J,Lia F,et al.Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene[J].Materials Science and Engineering:C(Materials for Biological Applications),2018,89:295-306.
    [10]Kang G F,Liu Y J,Wang Y F,et al.Uniaxial ratchetting of polymer and polymer matrix composites:Timedependent experimental observations[J].Materials Science and Engineering:A,2009,523(1/2):13-20.
    [11]Pan X D,Kang G Z,Zhu Z W,et al.Experimental study on uniaxial time-dependent ratcheting of a polyetherimide polymer[J].Journal of Zhejiang University Science A:Applied Physics&Engineering,2010,11(10):804-810.
    [12]Jiang H,Zhang J W,Kang G Z,et al.A test procedure for separating viscous recovery and accumulated unrecoverable deformation of polymer under cyclic loading[J].Polymer Testing,2013,32(8):1445-1451.
    [13]Lu F C,Kang G Z,Zhu Y L,et al.Experimental observation on multiaxial ratchetting of poly-carbonate polymer at room temperature[J].Polymer Testing,2016,50:135-144.
    [14]Yang J Y,Kang G Z,Chen K J,et al.Experimental study on uniaxial ratchetting-fatigue interaction of polyamide-6[J].Polymer Testing,2018,69:545-555.
    [15]Wang M,Liu A,Liu Z,et al.Effect of hot humid environmental exposure on fatigue crack growth of adhesive-bonded aluminum A356 joints[J].International Journal of Adhesion and Adhesives,2013,40(40):1-10.
    [16]Tang J H,Sridhar I,Srikanth N.Static and fatigue failure analysis of adhesively bonded thick composite single lap joints[J].Composites Science and Technology,2013,86(7):18-25.
    [17]Zheng X T,Wang H Y,Wang W,et al.Compressive ratcheting effect of expanded PTFE considering multiple load paths[J].Polymer Testing,2017,61:93-99.
    [18]张军,贾宏.内聚力模型的形状对胶接结构断裂过程的影响[J].力学学报,2016,48(5):1088-1095.Zhang Jun,Jia Hong.Influence of cohesive zone models shape on adhesively bonded joints[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1088-1095(in Chinese).
    [19]张军,张永祥,杨军.环氧树脂胶湿热与室温环境下的蠕变行为研究[J].机械强度,2015,37(2):237-242.Zhang Jun,Zhang Yongxiang,Yang Jun.Investigation on epoxy creep behavior at ambient and hydrothermal environment[J].Journal of Mechanical Strength,2015,37(2):237-242(in Chinese).
    [20]张军,王增威,杨军,等.环氧树脂胶对接结构的疲劳试验与理论研究[J].中国胶粘剂,2014,23(9):17-21.Zhang Jun,Wang Zengwei,Yang Jun,et al.Fatigue experiment and theoretical investigation on epoxy resin adhesive butt joint[J].China Adhesives,2014,23(9):17-21(in Chinese).
    [21]Shrestha R,Simsiriwong J,Shamsaei N.Load history and sequence effects on cyclic deformation and fatigue behavior of a thermoplastic polymer[J].Polymer Testing,2016,56:99-109.
    [22]Boutar Y,Na?mi S,Mezlini S,et al.Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry:Effect of surface roughness and adhesive thickness[J].International Journal of Adhesion and Adhesives,2018,83:143-152.
    [23]Shahverdi M,Vassilopoulos A P,Keller T.Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading[J].Composites Part A:Applied Science and Manufacturing,2012,43(10):1689-1697.
    [24]Wahab M A,Ashcroft I A,Crocombe A D,et al.Finite element prediction of fatigue crack propagation lifetime in composite bonded joints[J].Composites Part A:Applied Science and Manufacturing,2004,35(2):213-222.
    [25]Reis P B,Monteiro J R,Pereira A M,et al.Fatigue behaviour of epoxy-steel single lap joints under variable frequency[J].International Journal of Adhesion and Adhesives,2015,63(63):66-73.
    [26]Jen Y.Fatigue life evaluation of adhesively bonded scarf joints[J].International Journal of Fatigue,2012,36(1):30-39.
    [27]Zielecki W,Kubit A,Trzepieciński T,et al.Impact of multiwall carbon nanotubes on the fatigue strength of adhesive joints[J].International Journal of Adhesion and Adhesives,2017,73:16-21.
    [28]Jiang H,Zhang J,Kang G,et al.A test procedure for separating viscous recovery and accumulated unrecoverable deformation of polymer under cyclic loading[J].Polymer Testing,2013,32(8):1445-1451.
    [29]Lin Y C,Chen X M,Liu Z H,et al.Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J].International Journal of Fatigue,2013,48(48):122-132.
    [30]Lin Y C,Liu Z H,Chen X M,et al.Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stresscontrolled cyclic loadings[J].Computational Materials Science,2013,73:128-138.
    [31]陈旭,李建军,陈刚,等.交变接触载荷下的铝合金微动疲劳[J].天津大学学报:自然科学与工程技术版,2017,50(5):459-465.Chen Xu,Li Jianjun,Chen Gang,et al.Fretting fatigue behavior of aluminum alloy under cyclic contact pressure[J].Journal of Tianjin University:Science and Technology,2017,50(5):459-465(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700