基于全寿命环境成本的工程结构维护方案优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Maintenance plan optimization of engineering structures based on life-cycle environmental costs
  • 作者:王竹君 ; 徐祖恩 ; 吴柯娴 ; 金伟良
  • 英文作者:WANG Zhujun;XU Zu'en;WU Kexian;JIN Weiliang;Structural Engineering Institute, Zhejiang University;Zhejiang Province Institute of Communications Planning,Design and Research;
  • 关键词:工程结构 ; 环境成本 ; 多目标优化 ; 折现率
  • 英文关键词:engineering structure;;environmental cost;;multi-objective optimization;;discount rate
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:浙江大学结构工程研究所;浙江省交通规划设计研究院;
  • 出版日期:2018-12-05 16:43
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:浙江省交通运输厅交通工程建设科研计划(2015J02);; 国家重点研发计划(2016YFC0701400);; 国家自然科学基金委员会国际(地区)合作与交流项目(51820105012)
  • 语种:中文;
  • 页:JZJB201902022
  • 页数:11
  • CN:02
  • ISSN:11-1931/TU
  • 分类号:231-241
摘要
工程结构全寿命过程中存在有害气体、污水和固体废弃物排放等环境问题,但是由其造成的经济损失却很少在结构设计或工程决策过程中予以考虑。为此,将三类污染物排放的防治成本计入工程活动的环境成本中,得到了多种建筑材料、能源消耗、运输方式和建筑机械使用的环境成本。通过将环境成本与经典全寿命成本模型相结合,建立了包含环境成本的全寿命总成本模型。根据所提出的环境成本模型和全寿命总成本模型,以某一沿海高速公路桥梁结构为例,通过设置预防性维护措施和必要性维护措施,对其进行维护方案的多目标优化,分析环境成本对工程决策的影响。并对直接成本和环境成本的不确定性进行了分析,研究了环境成本折现率对环境成本影响。结果表明,在结构优化过程中考虑环境成本能够得到经济效益和环境综合性能更佳的工程方案。
        Environmental problems resulted from engineering activities include the emissions of harmful air pollutants, effluents and solid wastes. However, the economic losses associated with these pollutions have rarely been considered in the structural design or engineering decision-making process. For this reason, the environmental costs of construction materials, energies, transportations and construction equipment were calculated based on the pollution prevention costs of three types of pollutants. The environmental cost-incorporated life-cycle total cost model was generated by combining environmental costs to the classical life-cycle cost model. Based on the environmental cost model and life-cycle total cost model proposed here, a multi-objective optimization of bridge maintenance plan was performed considering preventive maintenance activities and essential maintenance activities, so as to analyze the effect of environmental costs on engineering decisions. The uncertainties of direct costs and environmental costs were also discussed, and the effect of environmental cost discount rate was investigated. Results indicate that structural optimization involving environmental costs can produce engineering solutions with better comprehensive performance with respect to economic efficiency and environment impacts.
引文
[1] 国家统计局. 全国污染治理投资情况(2001-2014年)[DB/OL].[2018- 03- 06].http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2014/201609/t20160913_1399641.html.
    [2] LANDRIGAN P J, FULLER R, ACOSTA N J R, et al. The Lancet Commission on pollution and health[J]. The Lancet, 2017, 391(10119):462-512.
    [3] Intergovernmental Panel on Climate Change. Climate change 2014: mitigation of climate change[M]. Cambridge University Press, 2015.
    [4] 金伟良, 钟小平. 可持续发展工程结构全寿命周期设计理论体系研究[J]. 中国工程科学, 2012,30(3): 100-107.(JIN Weiliang, ZHONG Xiaoping. Sustainable development-oriented design theory of engineering structures in whole life-cycle[J]. Engineering Science,2012, 30(3):100-107. (in Chinese))
    [5] 金伟良, 钟小平. 结构全寿命的耐久性与安全性, 适用性的关系[J]. 建筑结构学报, 2009, 30(6): 1-7. (JIN Weiliang, ZHONG Xiaoping. Relationship of structural durability with structural safety and serviceability in whole life-cycle[J]. Journal of Building Structures, 2009, 30(6):1-7. (in Chinese))
    [6] WANG Z J, JIN W L, DONG Y, et al. Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives[J]. Engineering Structures, 2018, 157: 119-131.
    [7] 金伟良, 牛荻涛. 工程结构耐久性与全寿命设计理论[J]. 工程力学, 2011, 28(2): 31-37.(JIN Weiliang, NIU Ditao. The state-of-the-art on durability and life-cycle design theory of engineering structures[J].Engineering Mechanics,2011, 28(2): 31-37. (in Chinese))
    [8] REBITZER G, EKVALL T, FRISCHKNECHT R, et al. Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications[J]. Environment International, 2004, 30(5): 701-720.
    [9] International Organization for Standardization. Environmental management: life cycle assessment; principles and framework[S]. London: British Standards Institution, 2006,
    [10] International Organization for Standardization. Environmental management-life cycle assessment-life cycle impact assessment[S]. London: British Standards Institution, 2000.
    [11] AHLROTH S. The use of valuation and weighting sets in environmental impact assessment[J]. Resources, Conservation and Recycling, 2014, 85(1): 34- 41.
    [12] FRANGOPOL D M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges 1[J]. Structure and Infrastructure Engineering, 2011, 7(6): 389- 413.
    [13] FRANGOPOL D M, LIN KY, ESTES A C. Life-cycle cost design of deteriorating structures[J]. Journal of Structural Engineering, 1997, 123(10): 1390-1401.
    [14] CHO H N, KIM J H, CHOI Y M, et al. Practical application of life-cycle cost effective design and rehabilitation of civil infrastructures[M]. Reston, VA: ASCE Press, 2004: 295-311.
    [15] DONG Y, FRANGOPOL D M, SAYDAM D. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10): 1451-1467.
    [16] YI S C, CHO H N, HWANG Y K, et al. Practical life-cycle-cost effective optimum design of steel bridges[M]. Reston, VA: ASCE Press, 2004: 328-343.
    [17] KENDALL A, KEOLEIAN G A, HELFAND G E. Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications[J]. Journal of Infrastructure Systems, 2008, 14(3): 214-222.
    [18] EPA. Air pollution: current and future challenges.[EB/OL].[2017- 09-26]. https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges.
    [19] DONOSO M C, VARGAS N M. Water interactions with energy, environment, food, and agriculture[M]. Oxford: EOLSS Publishers Company Limited, 2010: 348.
    [20] MEHAN G T, GRUBBS G H, FRACE S E, et al. Development document for final effluent limitations guidelines and standards for the iron and steel manufacturing point source category[R/OL]. [2017- 09-29]. https://www.epa.gov/sites/production/files/2015-11/documents/mp-m_dd_2003.pdf.
    [21] HUNKELER D, LICHTENVORT K, REBITZER G. Environmental life cycle costing[M]. Boca Raton: CRC Press, 2008: 64-69.
    [22] ENDRES A. Do effluent charges (always) reduce environmental damage?[J]. Oxford Economic Papers, 1983, 35(2): 254-261.
    [23] ANDERSON R C. The United States experience with economic incentives for protecting the environment[M]. Washington DC: Environmental Protection Agency, 2001: 5-12.
    [24] SCHNEIDER A M. An effluent fee schedule for air pollutants based on Pindex[J]. Journal of the Air Pollution Control Association, 1973, 23(6): 486- 489.
    [25] HELMER R, HESPANHOL I. World health organization: water pollution control: a guide to the use of water quality management principles[R/OL]. [2017- 09-20]. http://www.who.int/water_sanitation_health/resourcesquality/watpolcontrol.pdf.
    [26] CEWE P. Landfill taxes and bans[EB/OL]. [2017- 09-22]. http://www.cewep.eu/landfill-taxes-and-bans/.
    [27] Landfill tax: rates, exemptions and taxable activities[EB/OL]. [2017- 09-20]. https://www.gov.uk/guidance/landfill-tax-rates-exemptions-and-taxable-activities.
    [28] VAN DEN Heede P, DE BELIE N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: literature review and theoretical calculations[J]. Cement and Concrete Composites, 2012, 34(4): 431- 442.
    [29] Cement prices in the United States from 2007 to 2016 (in U.S. dollars per metric ton)*[DB/OL]. [2017- 09-12]. https://www.statista.com/statistics/219339/us-prices-of-cement/.
    [30] Price lists[DB/OL]. [2017- 09-12]. http://winstoneaggregates.co.nz/price-lists/.
    [31] Price history-tables and charts[DB/OL]. [2017-12- 06]. http://steelbenchmarker.com/files/history.pdf.
    [32] COSTA M M, SCHAEFFER R, WORRELL E. Exergy accounting of energy and materials flows in steel production systems[J]. Energy, 2001, 26(4): 363-384.
    [33] AUSTIN D. Pricing freight transport to account for external costs[J]. Congressional Budget, 2015.
    [34] LEWIS P, LEMING M, RASDORF W. Impact of engine idling on fuel use and CO2 emissions of nonroad diesel construction equipment[J]. Journal of Management in Engineering, 2011, 28(1): 31-38.
    [35] AASHTO. Standard specifications for highway bridges[S]. Washington DC: American Association of State Highway and Transportation Officials, 2011.
    [36] 建筑钢结构防腐蚀技术规程:JGJ/T 251—2011[S]. 北京:中国建筑工业出版社,2011.(Technical specification for anticorrosion of building steel structure: JGJ/T 251—2011[S]. Beijing: China Architecutre & Building Press, 2011.(in Chinese))
    [37] GLEASON D D. 2018 national painting cost estimator[R/OL]. [2018-3-16]. https://www.craftsman-book.com/content/downloads/national-estimator-downloads.
    [38] How much does sandblasting cost[DB/OL]. [2017-12- 08]. https://costaide.com/sandblasting-cost/.
    [39] KUTLUAY G, BABUNA F G, EREMEKTAR G, et al. Treatability of water-based paint industry effluents[J]. Fresenius Environmental Bulletin, 2004, 13(10): 1057-1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700