One-pot synthesis of silver colloid with body-heat for surface-enhanced Raman spectroscopy detections
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-pot synthesis of silver colloid with body-heat for surface-enhanced Raman spectroscopy detections
  • 作者:Wanchao ; Chen ; Yan ; Kang ; Han ; Zhang ; Tianxiong ; Huang ; Xin ; Tao ; Aiping ; Lu ; Yiping ; Du
  • 英文作者:Wanchao Chen;Yan Kang;Han Zhang;Tianxiong Huang;Xin Tao;Aiping Lu;Yiping Du;Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology;Department of Quality Assurance, Jiangsu Yangnong Chemical Group Co., Ltd.;
  • 英文关键词:One-pot synthesis;;Silver colloid;;Substrate;;Surface-enhanced Raman spectroscopy;;(SERS)
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology;Department of Quality Assurance, Jiangsu Yangnong Chemical Group Co., Ltd.;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 语种:英文;
  • 页:FXKB201905022
  • 页数:4
  • CN:05
  • ISSN:11-2710/O6
  • 分类号:107-110
摘要
In this study, a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat, and the SERS detection uses the fresh substrate to avoid the drawback of substrates' short life of use. The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer. The vial is grasped with the palm of the experimenter for several minutes without shaking. The proposed method is simple, rapid, green energy and cost-effective. By adjusting the concentration of trisodium citrate, not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved. As a SERS substrate, the silver colloid has high batch reproducibility and showed good SERS activity. The relative standard deviation between different manufacturers is 5.51% when the substrate of silver colloid is used for the detection of rhodamine 6 G. Using the substrate, the lowest detection concentrations of rhodamine 6 G, crystal violet, enrofloxacin, melamine and leucomalachite green are 1.0×10~(-8), 6.1×10~(-8),1.4 × 10~(-6), 7.1 ×10~(-5) and 5.1 ×10~(-8) mol/L, respectively. Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.
        In this study, a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat, and the SERS detection uses the fresh substrate to avoid the drawback of substrates' short life of use. The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer. The vial is grasped with the palm of the experimenter for several minutes without shaking. The proposed method is simple, rapid, green energy and cost-effective. By adjusting the concentration of trisodium citrate, not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved. As a SERS substrate, the silver colloid has high batch reproducibility and showed good SERS activity. The relative standard deviation between different manufacturers is 5.51% when the substrate of silver colloid is used for the detection of rhodamine 6 G. Using the substrate, the lowest detection concentrations of rhodamine 6 G, crystal violet, enrofloxacin, melamine and leucomalachite green are 1.0×10~(-8), 6.1×10~(-8),1.4 × 10~(-6), 7.1 ×10~(-5) and 5.1 ×10~(-8) mol/L, respectively. Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.
引文
[1]K.Haruna,T.A.Saleh,M.K.Hossain,A.A.Al-Saadi,Chem.Eng.J.304(2016)141-148.
    [2]C.Zhang,K.Wang,D.Han,Q.Pang,Spectrochim.Acta Part A 122(2014)387-391.
    [3]S.Yu,Z.Liu,W.Wang,et al.,Talanta 178(2018)498-506.
    [4]H.Zhang,L.Sun,Y.Zhang,et al.,Chin.Chem.Lett.29(2018)981-984.
    [5]Y.Y.Zhang,W.S.Yu,L.Pei,et al.,Food Chem.169(2015)80-84.
    [6]Y.F.Jiang,D.W.Sun,H.B.Pu,Q.Y.Wei,Trends Food Sci.Technol.75(2018)10-22.
    [7]F.K.Alsammarraie,M.Lin,A.Mustapha,et al.,Food Chem.259(2018)219-225.
    [8]F.Liu,H.Gu,Y.Lin,et al.,Spectrochim.Acta Part A 85(2012)111-119.
    [9]T.Janci,D.Valinger,J.G.Kljusuric,et al.,Food Chem.224(2017)48-54.
    [10]Y.Kang,W.Chen,H.Zhang,et al.,Microchem.J.137(2018)15-21.
    [11]B.Han,Y.L.Zhang,L.Zhu,et al.,Sens.Actuator.B:Chem.270(2018)500-507.
    [12]T.Wu,H.T.Wang,B.Shen,et al.,Chin.Chem.Lett.27(2016)745-748.
    [13]C.Muehlethaler,M.Leona,J.R.Lombardi,Forensic Sci.Int.268(2016)1-13.
    [14]M.A.Fikiet,S.R.Khandasammy,E.Mistek,et al.,Spectrochim.Acta Part A 197(2018)255-260.
    [15]S.C.Luo,K.Sivashanmugan,J.D.Liao,et al.,Biosens.Bioelectron.61(2014)232-240.
    [16]R.Gillibert,J.Q.Huang,Y.Zhang,et al.,Trac-Trend.Anal.Chem.105(2018)185-190.
    [17]F.Y.Diao,X.X.Xiao,B.Luo,et al.,Appl.Surf.Sci.427(2018)1271-1279.
    [18]M.Ratkaj,S.Miljanic,Vib.Spectrosc.74(2014)104-109.
    [19]L.Y.Chen,J.S.Yu,T.Fujita,M.W.Chen,Adv.Funct.Mater.19(2009)1221-1226.
    [20]H.Zhang,L.Sun,Y.Zhang,et al.,Talanta 174(2017)301-306.
    [21]L.Xu,J.Peng,M.Yan,et al.,Chem.Eng.Process.102(2016)186-193.
    [22]D.Singha,N.Barman,K.Sahu,J.Colloid Interface Sci.413(2014)37-42.
    [23]Y.Lu,C.Y.Zhang,D.J.Zhang,et al.,Chin.Chem.Lett.27(2016)689-692.
    [24]P.C.Lee,D.Meisel,J.Phys.Chem.86(1982)3391-3395.
    [25]C.H.Ma,J.Zhang,Y.C.Hong,et al.,Chin.Chem.Lett.26(2015)1455-1459.
    [26]R.Baber,L.Mazzei,N.T.K.Thanh,A.Gavriilidis,RSC Adv.5(2015)95585-95591.
    [27]Y.Qin,X.Ji,J.Jing,et al.,Colloid Surf.A 372(2010)172-176.
    [28]J.Haber,K.Sokolov,Langmuir 33(2017)10525-10530.
    [29]P.Wagener,A.Schwenke,S.Barcikowski,Langmuir 28(2012)6132-6140.
    [30]K.P.Velikov,G.E.Zegers,A.van Blaaderen,Langmuir 19(2003)1384-1389.
    [31]V.K.LaMer,R.H.Dinegar,JACS 72(1950)4847-4854.
    [32]D.V.Goia,J.Mater.Chem.14(2004)451-458.
    [33]A.Henglein,M.Giersig,J.Phys.Chem.B 103(1999)9533-9539.
    [34]N.Sawtarie,Y.H.Cai,Y.Lapitsky,Colloid Surf.B 157(2017)110-117.
    [35]K.Tokarek,J.L.Hueso,P.Kustrowski,et al.,Eur.J.Inorg.Chem.2013(2013)4940-4947.
    [36]A.M.Schwartzberg,T.Y.Olson,C.E.Talley,J.Z.Zhang,J.Phys.Chem.B 110(2006)19935-19944.
    [37]A.Moores,F.Goettmann,New J.Chem.30(2006)1121-1132.
    [38]Y.X.Wu,P.Liang,Q.M.Dong,et al.,Food Chem.237(2017)974-980.
    [39]H.S.S.Sharma,E.Carmichael,D.McCall,Vib.Spectrosc.83(2016)159-169.
    [40]C.R.Rekha,V.U.Nayar,K.G.Gopchandran,J.Sci.:Adv.Mater.Dev.3(2018)196-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700