Immunometabolism:A novel perspective of liver cancer microenvironment and its influence on tumor progression
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Immunometabolism:A novel perspective of liver cancer microenvironment and its influence on tumor progression
  • 作者:Qi ; Zhang ; Yu ; Lou ; Xue-Li ; Bai ; Ting-Bo ; Liang
  • 英文作者:Qi Zhang;Yu Lou;Xue-Li Bai;Ting-Bo Liang;Department of Hepatobiliary and Pancreatic Surgery,the Second Affiliated Hospital,Zhejiang University School of Medicine;Zhejiang Provincial Key Laboratory of Pancreatic Disease;
  • 英文关键词:Cholangiocarcinoma;;Hepatocellular carcinoma;;Tumor microenvironment;;Local immune status;;Metabolite
  • 中文刊名:ZXXY
  • 英文刊名:世界胃肠病学杂志(英文版)
  • 机构:Department of Hepatobiliary and Pancreatic Surgery,the Second Affiliated Hospital,Zhejiang University School of Medicine;Zhejiang Provincial Key Laboratory of Pancreatic Disease;
  • 出版日期:2018-08-21
  • 出版单位:World Journal of Gastroenterology
  • 年:2018
  • 期:v.24
  • 语种:英文;
  • 页:ZXXY201831004
  • 页数:13
  • CN:31
  • 分类号:35-47
摘要
The initiation and progression of liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are dependent on its tumor microenvironment. Immune cells are key players in the liver cancer microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells are closely related to cell metabolism. However, the effects of metabolic changes of immune cells on liver cancer progression are largely undefined. In this review, we summarize the recent findings of immunometabolism and relate these findings to liver cancer progression. We also explore the translation of the understanding of immunometabolism for clinical use.
        The initiation and progression of liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are dependent on its tumor microenvironment. Immune cells are key players in the liver cancer microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells are closely related to cell metabolism. However, the effects of metabolic changes of immune cells on liver cancer progression are largely undefined. In this review, we summarize the recent findings of immunometabolism and relate these findings to liver cancer progression. We also explore the translation of the understanding of immunometabolism for clinical use.
引文
1 Fact sheets by Population-Globocan-IARC.IARC 2012
    2 Siegel RL,Miller KD,Jemal A.Cancer statistics,2018.CA Cancer J Clin 2018;68:7-30[PMID:29313949 DOI:10.3322/caac.21442]
    3 Quail DF,Joyce JA.Microenvironmental regulation of tumor progression and metastasis.Nat Med 2013;19:1423-1437[PMID:24202395 DOI:10.1038/nm.3394]
    4 Fang H,Declerck YA.Targeting the tumor microenvironment:from understanding pathways to effective clinical trials.Cancer Res2013;73:4965-4977[PMID:23913938 DOI:10.1158/0008-5472.CAN-13-0661]
    5 Farshidfar F,Zheng S,Gingras MC,Newton Y,Shih J,Robertson AG,Hinoue T,Hoadley KA,Gibb EA,Roszik J,Covington KR,Wu CC,Shinbrot E,Stransky N,Hegde A,Yang JD,Reznik E,Sadeghi S,Pedamallu CS,Ojesina AI,Hess JM,Auman JT,Rhie SK,Bowlby R,Borad MJ;Cancer Genome Atlas Network,Zhu AX,Stuart JM,Sander C,Akbani R,Cherniack AD,Deshpande V,Mounajjed T,Foo WC,Torbenson MS,Kleiner DE,Laird PW,Wheeler DA,Mc Ree AJ,Bathe OF,Andersen JB,Bardeesy N,Roberts LR,Kwong LN.Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.Cell Rep 2017;18:2780-2794[PMID:28297679 DOI:10 .1016/j.celrep.2017.02.033]
    6 Cancer Genome Atlas Research Network.Cancer Genome Atlas Research Network.Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.Cell2017;169:1327-1341.e23[PMID:28622513 DOI:10.1016/j.cell.2017.05.046]
    7 Gajewski TF,Schreiber H,Fu YX.Innate and adaptive immune cells in the tumor microenvironment.Nat Immunol 2013;14:1014-1022[PMID:24048123 DOI:10.1038/ni.2703]
    8 Yaqoob P.Fatty acids as gatekeepers of immune cell regulation.Trends Immunol 2003;24:639-645[PMID:14644137]
    9 Lawless SJ,Kedia-Mehta N,Walls JF,Mc Garrigle R,Convery O,Sinclair LV,Navarro MN,Murray J,Finlay DK.Glucose represses dendritic cell-induced T cell responses.Nat Commun 2017;8:15620[PMID:28555668 DOI:10.1038/ncomms15620]
    10 O’Neill L A,Kishton R J,Rathmell J.Aguide to immunometabolism for immunologists.Nat Rev Immunol 2016;16:553-565[PMID:27396447 DOI:10.1038/nri.2016.70]
    11 Flecken T,Schmidt N,Hild S,Gostick E,Drognitz O,Zeiser R,Schemmer P,Bruns H,Eiermann T,Price DA,Blum HE,Neumann-Haefelin C,Thimme R.Immunodominance and functional alterations of tumor-associated antigen-specific CD8+T-cell responses in hepatocellular carcinoma.Hepatology 2014;59:1415-1426[PMID:24002931 DOI:10.1002/hep.26731]
    12 Prieto J,Melero I,Sangro B.Immunological landscape and immunotherapy of hepatocellular carcinoma.Nat Rev Gastroenterol Hepatol 2015;12:681-700[PMID:26484443 DOI:10 .1038/nrgastro.2015.173]
    13 Wu K,Kryczek I,Chen L,Zou W,Welling TH.Kupffer cell suppression of CD8+T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions.Cancer Res2009;69:8067-8075[PMID:19826049 DOI:10.1158/0008-5472.can-09-0901]
    14 Zhou SL,Zhou ZJ,Hu ZQ,Huang XW,Wang Z,Chen EB,Fan J,Cao Y,Dai Z,Zhou J.Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib.Gastroenterology 2016;150:1646-1658.e17[PMID:26924089DOI:10.1053/j.gastro.2016.02.040]
    15 Shi JY,Gao Q,Wang ZC,Zhou J,Wang XY,Min ZH,Shi YH,Shi GM,Ding ZB,Ke AW,Dai Z,Qiu SJ,Song K,Fan J.Margininfiltrating CD20(+)B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma.Clin Cancer Res 2013;19:5994-6005[PMID:24056784 DOI:10 .1158/1078-0432.ccr-12-3497]
    16 Dadi S,Chhangawala S,Whitlock BM,Franklin RA,Luo CT,Oh SA,Toure A,Pritykin Y,Huse M,Leslie CS,Li MO.Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells.Cell 2016;164:365-377[PMID:26806130DOI:10.1016/j.cell.2016.01.002]
    17 Gonzalez-Carmona MA,Lukacs-Kornek V,Timmerman A,Shabani S,Kornek M,Vogt A,Yildiz Y,Sievers E,SchmidtWolf IG,Caselmann WH,Sauerbruch T,Schmitz V.CD40ligandexpressing dendritic cells induce regression of hepatocellular carcinoma by activating innate and acquired immunity in vivo.Hepatology 2008;48:157-168[PMID:18537185 DOI:10.1002/hep.22296]
    18 Schrader J.The role of MDSCs in hepatocellular carcinoma--in vivo veritas?J Hepatol 2013;59:921-923[PMID:23958935 DOI:10 .1016/j.jhep.2013.08.003]
    19 Eggert T,Wolter K,Ji J,Ma C,Yevsa T,Klotz S,MedinaEcheverz J,Longerich T,Forgues M,Reisinger F,Heikenwalder M,Wang XW,Zender L,Greten TF.Distinct Functions of SenescenceAssociated Immune Responses in Liver Tumor Surveillance and Tumor Progression.Cancer Cell 2016;30:533-547[PMID:27728804 DOI:10.1016/j.ccell.2016.09.003]
    20 Aono K,Isobe K,Nakashima I,Kondo S,Miyachi M,Nimura Y.Kupffer cells cytotoxicity against hepatoma cells is related to nitric oxide.Biochem Biophys Res Commun 1994;201:1175-1181[PMID:8024559 DOI:10.1006/bbrc.1994.1829]
    21 Saito H,Kurose I,Ebinuma H,Fukumura D,Higuchi H,Atsukawa K,Tada S,Kimura H,Yonei Y,Masuda T,Miura S,Ishii H.Kupffer cell-mediated cytotoxicity against hepatoma cells occurs through production of nitric oxide and adhesion via ICAM-1/CD18.Int Immunol 1996;8:1165-1172[PMID:8757962]
    22 Li XY,Wu L,Li SW,Zhou WB,Wang MY,Zuo GQ,Liu CA,Ding X.Effect of CD16a,the surface receptor of Kupffer cells,on the growth of hepatocellular carcinoma cells.Int J Mol Med 2016;37:1465-1474[PMID:27082928 DOI:10.3892/ijmm.2016.2561]
    23 Rushfeldt C,Sveinbj?rnsson B,Seljelid R,Smedsr?d B.Early events of hepatic metastasis formation in mice:role of Kupffer and NK-cells in natural and interferon-gamma-stimulated defense.J Surg Res 1999;82:209-215[PMID:10090831 DOI:10.1006/jsre.1998.5532]
    24 Seki S,Nakashima H,Nakashima M,Kinoshita M.Antitumor immunity produced by the liver Kupffer cells,NK cells,NKT cells,and CD8 CD122 T cells.Clin Dev Immunol 2011;2011:868345[PMID:22190974 DOI:10.1155/2011/868345]
    25 Ding T,Xu J,Wang F,Shi M,Zhang Y,Li SP,Zheng L.High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection.Hum Pathol 2009;40:381-389[PMID:18992916 DOI:10.1016/j.humpath.2008.08.011]
    26 Yeung OW,Lo CM,Ling CC,Qi X,Geng W,Li CX,Ng KT,Forbes SJ,Guan XY,Poon RT,Fan ST,Man K.Alternatively activated(M2)macrophages promote tumour growth and invasiveness in hepatocellular carcinoma.J Hepatol 2015;62:607-616[PMID:25450711 DOI:10.1016/j.jhep.2014.10.029]
    27 Umemoto Y,Okano S,Matsumoto Y,Nakagawara H,Matono R,Yoshiya S,Yamashita Y,Yoshizumi T,Ikegami T,Soejima Y,Harada M,Aishima S,Oda Y,Shirabe K,Maehara Y.Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy.J Gastroenterol 2015;50:65-75[PMID:24509608 DOI:10.1007/s00535-014-0933-3]
    28 Kuang DM,Zhao Q,Peng C,Xu J,Zhang JP,Wu C,Zheng L.Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1.J Exp Med 2009;206:1327-1337[PMID:19451266 DOI:10 .1084/jem.20082173]
    29 Zhou J,Ding T,Pan W,Zhu LY,Li L,Zheng L.Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients.Int J Cancer 2009;125:1640-1648[PMID:19569243DOI:10.1002/ijc.24556]
    30 Wu Y,Kuang DM,Pan WD,Wan YL,Lao XM,Wang D,Li XF,Zheng L.Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4interactions.Hepatology 2013;57:1107-1116[PMID:23225218DOI:10.1002/hep.26192]
    31 Yang J,Zhang JX,Wang H,Wang GL,Hu QG,Zheng QC.Hepatocellular carcinoma and macrophage interaction induced tumor immunosuppression via Treg requires TLR4 signaling.World J Gastroenterol 2012;18:2938-2947[PMID:22736917DOI:10.3748/wjg.v18.i23.2938]
    32 Capece D,Fischietti M,Verzella D,Gaggiano A,Cicciarelli G,Tessitore A,Zazzeroni F,Alesse E.The inflammatory microenvironment in hepatocellular carcinoma:a pivotal role for tumor-associated macrophages.Biomed Res Int 2013;2013:187204[PMID:23533994 DOI:10.1155/2013/187204]
    33 Wan S,Zhao E,Kryczek I,Vatan L,Sadovskaya A,Ludema G,Simeone DM,Zou W,Welling TH.Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells.Gastroenterology2014;147:1393-1404[PMID:25181692 DOI:10.1053/j.gastro.2014.08.039]
    34 Wan S,Kuo N,Kryczek I,Zou W,Welling TH.Myeloid cells in hepatocellular carcinoma.Hepatology 2015;62:1304-1312[PMID:25914264 DOI:10.1002/hep.27867]
    35 Krenkel O,Tacke F.Liver macrophages in tissue homeostasis and disease.Nat Rev Immunol 2017;17:306-321[PMID:28317925DOI:10.1038/nri.2017.11]
    36 Wilson CL,Jurk D,Fullard N,Banks P,Page A,Luli S,Elsharkawy AM,Gieling RG,Chakraborty JB,Fox C,Richardson C,Callaghan K,Blair GE,Fox N,Lagnado A,Passos JF,Moore AJ,Smith GR,Tiniakos DG,Mann J,Oakley F,Mann DA.NFκB1is a suppressor of neutrophil-driven hepatocellular carcinoma.Nat Commun 2015;6:6818[PMID:25879839 DOI:10.1038/ncomms7818]
    37 Fridlender ZG,Sun J,Kim S,Kapoor V,Cheng G,Ling L,Worthen GS,Albelda SM.Polarization of tumor-associated neutrophil phenotype by TGF-beta:“N1”versus“N2”TAN.Cancer Cell 2009;16:183-194[PMID:19732719 DOI:10.1016/j.ccr.2009.06.017]
    38 Tsuda Y,Fukui H,Asai A,Fukunishi S,Miyaji K,Fujiwara S,Teramura K,Fukuda A,Higuchi K.An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma.J Clin Biochem Nutr 2012;51:204-212[PMID:23170048 DOI:10.3164/jcbn.12-32]
    39 He G,Zhang H,Zhou J,Wang B,Chen Y,Kong Y,Xie X,Wang X,Fei R,Wei L,Chen H,Zeng H.Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma.J Exp Clin Cancer Res 2015;34:141[PMID:26581194 DOI:10.1186/s13046-015-0256-0]
    40 Xiao WK,Chen D,Li SQ,Fu SJ,Peng BG,Liang LJ.Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma:a meta-analysis.BMC Cancer 2014;14:117[PMID:24559042 DOI:10.1186/1471-2407-14-117]
    41 da Fonseca LG,Barroso-Sousa R,Bento Ada S,Blanco BP,Valente GL,Pfiffer TE,Hoff PM,Sabbaga J.Pre-treatment neutrophil-to-lymphocyte ratio affects survival in patients with advanced hepatocellular carcinoma treated with sorafenib.Med Oncol 2014;31:264[PMID:25273866 DOI:10.1007/s12032-014-0264-5]
    42 Motomura T,Shirabe K,Mano Y,Muto J,Toshima T,Umemoto Y,Fukuhara T,Uchiyama H,Ikegami T,Yoshizumi T,Soejima Y,Maehara Y.Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment.J Hepatol 2013;58:58-64[PMID:22925812DOI:10.1016/j.jhep.2012.08.017]
    43 Imai Y,Kubota Y,Yamamoto S,Tsuji K,Shimatani M,Shibatani N,Takamido S,Matsushita M,Okazaki K.Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells:an in vitro study.J Gastroenterol Hepatol 2005;20:287-293[PMID:15683434 DOI:10.1111/j.1440-1746.2004.03575.x]
    44 He M,Peng A,Huang XZ,Shi DC,Wang JC,Zhao Q,Lin H,Kuang DM,Ke PF,Lao XM.Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma.Oncoimmunology 2016;5:e1219828[PMID:27853643 DOI:10.1080/2162402x.2016.1219828]
    45 Li XF,Chen DP,Ouyang FZ,Chen MM,Wu Y,Kuang DM,Zheng L.Increased autophagy sustains the survival and protumourigenic effects of neutrophils in human hepatocellular carcinoma.J Hepatol 2015;62:131-139[PMID:25152203 DOI:10 .1016/j.jhep.2014.08.023]
    46 Kuang DM,Zhao Q,Wu Y,Peng C,Wang J,Xu Z,Yin XY,Zheng L.Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma.J Hepatol 2011;54:948-955[PMID:21145847 DOI:10.1016/j.jhep.2010.08.041]
    47 Xu R,Huang H,Zhang Z,Wang FS.The role of neutrophils in the development of liver diseases.Cell Mol Immunol 2014;11:224-231[PMID:24633014 DOI:10.1038/cmi.2014.2]
    48 Guo CL,Yang HC,Yang XH,Cheng W,Dong TX,Zhu WJ,Xu Z,Zhao L.Associations between infiltrating lymphocyte subsets and hepatocellular carcinoma.Asian Pac J Cancer Prev 2012;13:5909-5913[PMID:23317279]
    49 Fu J,Xu D,Liu Z,Shi M,Zhao P,Fu B,Zhang Z,Yang H,Zhang H,Zhou C,Yao J,Jin L,Wang H,Yang Y,Fu YX,Wang FS.Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients.Gastroenterology2007;132:2328-2339[PMID:17570208 DOI:10.1053/j.gastro.2007.03.102]
    50 Kalathil S,Lugade AA,Miller A,Iyer R,Thanavala Y.Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+)T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality.Cancer Res 2013;73:2435-2444[PMID:23423978 DOI:10 .1158/0008-5472.can-12-3381]
    51 Garnelo M,Tan A,Her Z,Yeong J,Lim CJ,Chen J,Lim KH,Weber A,Chow P,Chung A,Ooi LL,Toh HC,Heikenwalder M,Ng IO,Nardin A,Chen Q,Abastado JP,Chew V.Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma.Gut 2017;66:342-351[PMID:26669617 DOI:10.1136/gutjnl-2015-310814]
    52 Ringelhan M,Pfister D,O’Connor T,Pikarsky E,Heikenwalder M.The immunology of hepatocellular carcinoma.Nature Immunology2018;19:222-232[DOI:10.1038/s41590-018-0044-z]
    53 Yang S,Tian Z,Wu Y,van Velkinburgh JC,Ni B.Pivotal roles of ILCs in hepatic diseases.Int Rev Immunol 2015;34:509-522[PMID:25730441 DOI:10.3109/08830185.2015.1008631]
    54 Artis D,Spits H.The biology of innate lymphoid cells.Nature2015;517:293-301[PMID:25592534 DOI:10.1038/nature14189]
    55 Abe H,Kimura A,Tsuruta S,Fukaya T,Sakaguchi R,Morita R,Sekiya T,Shichita T,Chayama K,Fujii-Kuriyama Y,Yoshimura A.Aryl hydrocarbon receptor plays protective roles in Con A-induced hepatic injury by both suppressing IFN-γexpression and inducing IL-22.Int Immunol 2014;26:129-137[PMID:24150244 DOI:10 .1093/intimm/dxt049]
    56 Kirchberger S,Royston DJ,Boulard O,Thornton E,Franchini F,Szabady RL,Harrison O,Powrie F.Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model.J Exp Med 2013;210:917-931[PMID:23589566 DOI:10 .1084/jem.20122308]
    57 Zhang P,Liu XK,Chu Z,Ye JC,Li KL,Zhuang WL,Yang DJ,Jiang YF.Detection of interleukin-33 in serum and carcinoma tissue from patients with hepatocellular carcinoma and its clinical implications.J Int Med Res 2012;40:1654-1661[PMID:23206447 DOI:10.1177/030006051204000504]
    58 Li J,Razumilava N,Gores GJ,Walters S,Mizuochi T,Mourya R,Bessho K,Wang YH,Glaser SS,Shivakumar P,Bezerra JA.Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation.J Clin Invest 2014;124:3241-3251[PMID:24892809 DOI:10.1172/jci73742]
    59 Jovanovic IP,Pejnovic NN,Radosavljevic GD,Pantic JM,Milovanovic MZ,Arsenijevic NN,Lukic ML.Interleukin-33/ST2axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells.Int J Cancer 2014;134:1669-1682[PMID:24105680 DOI:10.1002/ijc.28481]
    60 Mc Hedlidze T,Waldner M,Zopf S,Walker J,Rankin AL,Schuchmann M,Voehringer D,Mc Kenzie AN,Neurath MF,Pflanz S,Wirtz S.Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis.Immunity 2013;39:357-371[PMID:23954132DOI:10.1016/j.immuni.2013.07.018]
    61 Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation.Cell 2011;144:646-674[PMID:21376230 DOI:10 .1016/j.cell.2011.02.013]
    62 Kettner NM,Voicu H,Finegold MJ,Coarfa C,Sreekumar A,Putluri N,Katchy CA,Lee C,MooreD D,Fu L.Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis.Cancer Cell 2016;30:909-924[PMID:27889186 DOI:10.1016/j.ccell.2016.10.007]
    63 Huang Q,Tan Y,Yin P,Ye G,Gao P,Lu X,Wang H,Xu G.Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics.Cancer Res 2013;73:4992-5002[PMID:23824744 DOI:10.1158/0008-5472.CAN-13-0308]
    64 Gingold JA,Zhu D,Lee DF,Kaseb A,Chen J.Genomic Profiling and Metabolic Homeostasis in Primary Liver Cancers.Trends Mol Med 2018;24:395-411[PMID:29530485 DOI:10.1016/j.molmed.2018.02.006]
    65 Ngo H,Tortorella SM,Ververis K,Karagiannis TC.The Warburg effect:molecular aspects and therapeutic possibilities.Mol Biol Rep 2015;42:825-834[PMID:25253100 DOI:10.1007/s11033-014-3764-7]
    66 Jones RG,Thompson CB.Tumor suppressors and cell metabolism:a recipe for cancer growth.Genes Dev 2009;23:537-548[PMID:19270154 DOI:10.1101/gad.1756509]
    67 Shang RZ,Qu SB,Wang DS.Reprogramming of glucose metabolism in hepatocellular carcinoma:Progress and prospects.World J Gastroenterol 2016;22:9933-9943[PMID:28018100DOI:10.3748/wjg.v22.i45.9933]
    68 Zhang Q,Bai X,Chen W,Ma T,Hu Q,Liang C,Xie S,Chen C,Hu L,Xu S,Liang T.Wnt/β-catenin signaling enhances hypoxiainduced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1αsignaling.Carcinogenesis2013;34:962-973[PMID:23358852 DOI:10.1093/carcin/bgt027]
    69 Kitamura K,Hatano E,Higashi T,Narita M,Seo S,Nakamoto Y,Yamanaka K,Nagata H,Taura K,Yasuchika K,Nitta T,Uemoto S.Proliferative activity in hepatocellular carcinoma is closely correlated with glucose metabolism but not angiogenesis.J Hepatol 2011;55:846-857[PMID:21334407 DOI:10.1016/j.jhep.2011.01.038]
    70 Jia YY,Zhao JY,Li BL,Gao K,Song Y,Liu MY,Yang XJ,Xue Y,Wen AD,Shi L.mi R-592/WSB1/HIF-1αaxis inhibits glycolytic metabolism to decrease hepatocellular carcinoma growth.Oncotarget 2016;7:35257-35269[PMID:27153552 DOI:10 .18632/oncotarget.9135]
    71 Jiang J,Nilsson-Ehle P,Xu N.Influence of liver cancer on lipid and lipoprotein metabolism.Lipids Health Dis 2006;5:4[PMID:16515689 DOI:10.1186/1476-511x-5-4]
    72 Budhu A,Roessler S,Zhao X,Yu Z,Forgues M,Ji J,Karoly E,Qin LX,Ye QH,Jia HL,Fan J,Sun HC,Tang ZY,Wang XW.Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes.Gastroenterology 2013;144:1066-1075.e1[PMID:23376425 DOI:10.1053/j.gastro.2013.01.054]
    73 Yang H,Ye D,Guan KL,Xiong Y.IDH1 and IDH2 mutations in tumorigenesis:mechanistic insights and clinical perspectives.Clin Cancer Res 2012;18:5562-5571[PMID:23071358 DOI:10 .1158/1078-0432.CCR-12-1773]
    74 Turkalp Z,Karamchandani J,Das S.IDH mutation in glioma:new insights and promises for the future.JAMA Neurol 2014;71:1319-1325[PMID:25155243 DOI:10.1001/jamaneurol.2014.1205]
    75 Borger DR,Goyal L,Yau T,Poon RT,Ancukiewicz M,Deshpande V,Christiani DC,Liebman HM,Yang H,Kim H,Yen K,Faris JE,Iafrate AJ,Kwak EL,Clark JW,Allen JN,Blaszkowsky LS,Murphy JE,Saha SK,Hong TS,Wo JY,Ferrone CR,Tanabe KK,Bardeesy N,Straley KS,Agresta S,Schenkein DP,Ellisen LW,Ryan DP,Zhu AX.Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma.Clin Cancer Res 2014;20:1884-1890[PMID:24478380 DOI:10 .1158/1078-0432.CCR-13-2649]
    76 Fathi AT,Nahed BV,Wander SA,Iafrate AJ,Borger DR,Hu R,Thabet A,Cahill DP,Perry AM,Joseph CP,Muzikansky A,Chi AS.Elevation of Urinary 2-Hydroxyglutarate in IDH-Mutant Glioma.Oncologist 2016;21:214-219[PMID:26834160 DOI:10 .1634/theoncologist.2015-0342]
    77 Chen JY,Lai YS,Tsai HJ,Kuo CC,Yen BL,Yeh SP,Sun HS,Hung WC.The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells.Sci Rep 2016;6:32428[PMID:27577048 DOI:10 .1038/srep32428]
    78 Zhang C,Moore LM,Li X,Yung WK,Zhang W.IDH1/2mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma.Neuro Oncol 2013;15:1114-1126[PMID:23877318 DOI:10.1093/neuonc/not087]
    79 Izquierdo-Garcia JL,Viswanath P,Eriksson P,Cai L,Radoul M,Chaumeil MM,Blough M,Luchman HA,Weiss S,Cairncross JG,Phillips JJ,Pieper RO,Ronen SM.IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism.Cancer Res 2015;75:2999-3009[PMID:26045167 DOI:10.1158/0008-5472.can-15-0840]
    80 Bogdanovic E.IDH1,lipid metabolism and cancer:Shedding new light on old ideas.Biochim Biophys Acta 2015;1850:1781-1785[PMID:25960387 DOI:10.1016/j.bbagen.2015.04.014]
    81 Arai Y,Totoki Y,Hosoda F,Shirota T,Hama N,Nakamura H,Ojima H,Furuta K,Shimada K,Okusaka T,Kosuge T,Shibata T.Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma.Hepatology2014;59:1427-1434[PMID:24122810 DOI:10.1002/hep.26890]
    82 Cheng AL,Shen YC,Zhu AX.Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma.Oncology 2011;81:372-380[PMID:22269894 DOI:10.1159/000335472]
    83 Churi CR,Shroff R,Wang Y,Rashid A,Kang HC,Weatherly J,Zuo M,Zinner R,Hong D,Meric-Bernstam F,Janku F,Crane CH,Mishra L,Vauthey JN,Wolff RA,Mills G,Javle M.Mutation profiling in cholangiocarcinoma:prognostic and therapeutic implications.PLo S One 2014;9:e115383[PMID:25536104 DOI:10 .1371/journal.pone.0115383]
    84 S i a D,Tovar V,Moeini A,Llovet J M.Intrahepatic cholangiocarcinoma:pathogenesis and rationale for molecular therapies.Oncogene 2013;32:4861-4870[PMID:23318457 DOI:10 .1038/onc.2012.617]
    85 Wu YM,Su F,Kalyana-Sundaram S,Khazanov N,Ateeq B,Cao X,Lonigro RJ,Vats P,Wang R,Lin SF,Cheng AJ,Kunju LP,Siddiqui J,Tomlins SA,Wyngaard P,Sadis S,Roychowdhury S,Hussain MH,Feng FY,Zalupski MM,Talpaz M,Pienta KJ,Rhodes DR,Robinson DR,Chinnaiyan AM.Identification of targetable FGFR gene fusions in diverse cancers.Cancer Discov 2013;3:636-647[PMID:23558953 DOI:10.1158/2159-8290.cd-13-0050]
    86 Frattini V,Pagnotta SM,Tala,Fan JJ,Russo MV,Lee SB,Garofano L,Zhang J,Shi P,Lewis G,Sanson H,Frederick V,Castano AM,Cerulo L,Rolland DCM,Mall R,Mokhtari K,Elenitoba-Johnson KSJ,Sanson M,Huang X,Ceccarelli M,Lasorella A,Iavarone A.A metabolic function of FGFR3-TACC3gene fusions in cancer.Nature 2018;553:222-227[PMID:29323298 DOI:10.1038/nature25171]
    87 Chiang CH,Huang KC.Association between metabolic factors and chronic hepatitis B virus infection.World J Gastroenterol2014;20:7213-7216[PMID:24966591 DOI:10.3748/wjg.v20.i23.7213]
    88 Schoeman JC,Hou J,Harms AC,Vreeken RJ,Berger R,Hankemeier T,Boonstra A.Metabolic characterization of the natural progression of chronic hepatitis B.Genome Med 2016;8:64[PMID:27286979 DOI:10.1186/s13073-016-0318-8]
    89 Agani F,Jiang BH.Oxygen-independent regulation of HIF-1:novel involvement of PI3K/AKT/m TOR pathway in cancer.Curr Cancer Drug Targets 2013;13:245-251[PMID:23297826]
    90 Kasuno K,Takabuchi S,Fukuda K,Kizaka-Kondoh S,Yodoi J,Adachi T,Semenza GL,Hirota K.Nitric oxide induces hypoxiainducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling.J Biol Chem 2004;279:2550-2558[PMID:14600153 DOI:10.1074/jbc.M308197200]
    91 Tanaka H,Yamamoto M,Hashimoto N,Miyakoshi M,Tamakawa S,Yoshie M,Tokusashi Y,Yokoyama K,Yaginuma Y,Ogawa K.Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis.Cancer Res 2006;66:11263-11270[PMID:17145871 DOI:10 .1158/0008-5472.can-06-1699]
    92 Xia L,Mo P,Huang W,Zhang L,Wang Y,Zhu H,Tian D,Liu J,Chen Z,Zhang Y,Chen Z,Hu H,Fan D,Nie Y,Wu K.The TNF-α/ROS/HIF-1-induced upregulation of Fox MI expression promotes HCC proliferation and resistance to apoptosis.Carcinogenesis2012;33:2250-2259[PMID:22831955 DOI:10.1093/carcin/bgs249]
    93 Wang MD,Wu H,Huang S,Zhang HL,Qin CJ,Zhao LH,Fu GB,Zhou X,Wang XM,Tang L,Wen W,Yang W,Tang SH,Cao D,Guo LN,Zeng M,Wu MC,Yan HX,Wang HY.HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress.Oncotarget 2016;7:6711-6726[PMID:26744319 DOI:10.18632/oncotarget.6817]
    94 Kim K,Kim KH,Kim HH,Cheong J.Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha.Biochem J 2008;416:219-230[PMID:18782084 DOI:10.1042/bj20081336]
    95 Kim SY,Kim JK,Kim HJ,Ahn JK.Hepatitis B virus X protein sensitizes UV-induced apoptosis by transcriptional transactivation of Fas ligand gene expression.IUBMB Life 2005;57:651-658[PMID:16203685 DOI:10.1080/15216540500239697]
    96 Dai CY,Yeh ML,Huang CF,Hou CH,Hsieh MY,Huang JF,Lin IL,Lin ZY,Chen SC,Wang LY,Chuang WL,Yu ML,Tung HD.Chronic hepatitis C infection is associated with insulin resistance and lipid profiles.J Gastroenterol Hepatol 2015;30:879-884[PMID:23808794 DOI:10.1111/jgh.12313]
    97 Kawaguchi Y,Mizuta T.Interaction between hepatitis C virus and metabolic factors.World J Gastroenterol 2014;20:2888-2901[PMID:24659880 DOI:10.3748/wjg.v20.i11.2888]
    98 Bernsmeier C,Calabrese D,Heim MH,Duong HT.Hepatitis C virus dysregulates glucose homeostasis by a dual mechanism involving induction of PGC1αand dephosphorylation of Fox O1.J Viral Hepat 2014;21:9-18[PMID:24329853 DOI:10.1111/jvh.12208]
    99 Lee S,Mardinoglu A,Zhang C,Lee D,Nielsen J.Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis.Nucleic Acids Res 2016;44:5529-5539[PMID:27216817 DOI:10.1093/nar/gkw462]
    100 Sanyal AJ,Campbell-Sargent C,Mirshahi F,Rizzo WB,Contos MJ,Sterling RK,Luketic VA,Shiffman ML,Clore JN.Nonalcoholic steatohepatitis:association of insulin resistance and mitochondrial abnormalities.Gastroenterology 2001;120:1183-1192[PMID:11266382 DOI:10.1053/gast.2001.23256]
    101 Satapati S,Kucejova B,Duarte JA,Fletcher JA,Reynolds L,Sunny NE,He T,Nair LA,Livingston KA,Fu X,Merritt ME,Sherry AD,Malloy CR,Shelton JM,Lambert J,Parks EJ,Corbin I,Magnuson MA,Browning JD,Burgess SC.Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver.J Clin Invest 2015;125:4447-4462[PMID:26571396 DOI:10 .1172/JCI82204]
    102 Nassir F,Ibdah JA.Role of mitochondria in nonalcoholic fatty liver disease.Int J Mol Sci 2014;15:8713-8742[PMID:24837835DOI:10.3390/ijms15058713]
    103 Fromenty B,Robin MA,Igoudjil A,Mansouri A,Pessayre D.The ins and outs of mitochondrial dysfunction in NASH.Diabetes Metab 2004;30:121-138[PMID:15223984]
    104 Fujisawa K,Takami T,Matsumoto T,Yamamoto N,Sakaida I.Profiling of the circadian metabolome in thioacetamide-induced liver cirrhosis in mice.Hepatol Commun 2017;1:704-718[PMID:29404487 DOI:10.1002/hep4.1075]
    105 Nishikawa T,Bellance N,Damm A,Bing H,Zhu Z,Handa K,Yovchev MI,Sehgal V,Moss TJ,Oertel M,Ram PT,Pipinos II,Soto-Gutierrez A,Fox IJ,Nagrath D.A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease.J Hepatol 2014;60:1203-1211[PMID:24583248 DOI:10.1016/j.jhep.2014.02.014]
    106 Andrejeva G,Rathmell JC.Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors.Cell Metab 2017;26:49-70[PMID:28683294 DOI:10.1016/j.cmet.2017.06.004]
    107 Haschemi A,Kosma P,Gille L,Evans CR,Burant CF,Starkl P,Knapp B,Haas R,Schmid JA,Jandl C,Amir S,Lubec G,Park J,Esterbauer H,Bilban M,Brizuela L,Pospisilik JA,Otterbein LE,Wagner O.The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.Cell Metab 2012;15:813-826[PMID:22682222 DOI:10.1016/j.cmet.2012.04.023]
    108 Huang SC,Everts B,Ivanova Y,O’Sullivan D,Nascimento M,Smith AM,Beatty W,Love-Gregory L,Lam WY,O’Neill CM,Yan C,Du H,Abumrad NA,Urban JF Jr,Artyomov MN,Pearce EL,Pearce EJ.Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages.Nat Immunol 2014;15:846-855[PMID:25086775 DOI:10.1038/ni.2956]
    109 Namgaladze D,Brüne B.Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization.Biochim Biophys Acta 2014;1841:1329-1335[PMID:24960101 DOI:10.1016/j.bbalip.2014.06.007]
    110 Nomura M,Liu J,Rovira II,Gonzalez-Hurtado E,Lee J,Wolfgang MJ,Finkel T.Fatty acid oxidation in macrophage polarization.Nat Immunol 2016;17:216-217[PMID:26882249DOI:10.1038/ni.3366]
    111 Zhang Q,Wang HR,Mao CY,Sun M,Dominah G,Chen L,Zhuang Z.Fatty acid oxidation contributes to IL-1βsecretion in M2 macrophages and promotes macrophage-mediated tumor cell migration.Mol Metab 2018;94:27-35[DOI:10.1016/j.molimm.2017.12.011]
    112 Vats D,Mukundan L,Odegaard JI,Zhang L,Smith KL,Morel CR,Wagner RA,Greaves DR,Murray PJ,Chawla A.Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.Cell Metab 2006;4:13-24[PMID:16814729 DOI:10 .1016/j.cmet.2006.05.011]
    113 Biswas SK.Metabolic Reprogramming of Immune Cells in Cancer Progression.Immunity 2015;43:435-449[PMID:26377897 DOI:10 .1016/j.immuni.2015.09.001]
    114 Covarrubias AJ,Aksoylar HI,Yu J,Snyder NW,Worth AJ,Iyer SS,Wang J,Ben-Sahra I,Byles V,Polynne-Stapornkul T,Espinosa EC,Lamming D,Manning BD,Zhang Y,Blair IA,Horng T.Aktm TORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.Elife 2016;5[PMID:26894960DOI:10.7554/e Life.11612]
    115 Lim JE,Chung E,Son Y.A neuropeptide,Substance-P,directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/m TOR pathway even in the presence of IFNγ.Sci Rep 2017;7:9417[PMID:28842601 DOI:10.1038/s41598-017-09639-7]
    116 Zhou L,Wang Q,Yin P,Xing W,Wu Z,Chen S,Lu X,Zhang Y,Lin X,Xu G.Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.Anal Bioanal Chem 2012;403:203-213[PMID:22349331 DOI:10.1007/s00216-012-5782-4]
    117 Nath A,Li I,Roberts LR,Chan C.Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma.Sci Rep 2015;5:14752[PMID:26424075 DOI:10.1038/srep14752]
    118 Feingold KR,Shigenaga JK,Kazemi MR,Mc Donald CM,Patzek SM,Cross AS,Moser A,Grunfeld C.Mechanisms of triglyceride accumulation in activated macrophages.J Leukoc Biol 2012;92:829-839[PMID:22753953 DOI:10.1189/jlb.1111537]
    119 Colegio OR,Chu NQ,Szabo AL,Chu T,Rhebergen AM,Jairam V,Cyrus N,Brokowski CE,Eisenbarth SC,Phillips GM,Cline GW,Phillips AJ,Medzhitov R.Functional polarization of tumourassociated macrophages by tumour-derived lactic acid.Nature2014;513:559-563[PMID:25043024 DOI:10.1038/nature13490]
    120 Ruan GX,Kazlauskas A.Lactate engages receptor tyrosine kinases Axl,Tie2,and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis.J Biol Chem 2013;288:21161-21172[PMID:23754286 DOI:10 .1074/jbc.M113.474619]
    121 Ohashi T,Aoki M,Tomita H,Akazawa T,Sato K,Kuze B,Mizuta K,Hara A,Nagaoka H,Inoue N,Ito Y.M2-like macrophage polarization in high lactic acid-producing head and neck cancer.Cancer Sci 2017;108:1128-1134[PMID:28370718 DOI:10.1111/cas.13244]
    122 Spadaro O,Camell CD,Bosurgi L,Nguyen KY,Youm YH,Rothlin CV,Dixit VD.IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge.Cell Rep 2017;19:225-234[PMID:28402847 DOI:10.1016/j.celrep.2017.03.046]
    123 Pearce EL,Pearce EJ.Metabolic pathways in immune cell activation and quiescence.Immunity 2013;38:633-643[PMID:23601682 DOI:10.1016/j.immuni.2013.04.005]
    124 Palsson-Mc Dermott EM,Curtis AM,Goel G,Lauterbach MA,Sheedy FJ,Gleeson LE,van den Bosch MW,Quinn SR,DomingoFernandez R,Johnston DG,Jiang JK,Israelsen WJ,Keane J,Thomas C,Clish C,Vander Heiden M,Xavier RJ,O’Neill LA.Pyruvate kinase M2 regulates Hif-1αactivity and IL-1βinduction and is a critical determinant of the warburg effect in LPS-activated macrophages.Cell Metab 2015;21:65-80[PMID:25565206 DOI:10 .1016/j.cmet.2014.12.005]
    125 Moon JS,Nakahira K,Chung KP,De Nicola GM,Koo MJ,Pabón MA,Rooney KT,Yoon JH,Ryter SW,Stout-Delgado H,Choi AM.NOX4-dependent fatty acid oxidation promotes NLRP3inflammasome activation in macrophages.Nat Med 2016;22:1002-1012[PMID:27455510 DOI:10.1038/nm.4153]
    126 Moon JS,Hisata S,Park MA,De Nicola GM,Ryter SW,Nakahira K,Choi AMK.m TORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation.Cell Rep 2015;12:102-115[PMID:26119735 DOI:10.1016/j.celrep.2015.05.046]
    127 Littlewood-Evans A,Sarret S,Apfel V,Loesle P,Dawson J,Zhang J,Muller A,Tigani B,Kneuer R,Patel S,Valeaux S,Gommermann N,Rubic-Schneider T,Junt T,Carballido JM.GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis.J Exp Med 2016;213:1655-1662[PMID:27481132 DOI:10.1084/jem.20160061]
    128 Mills EL,Kelly B,Logan A,Costa ASH,Varma M,Bryant CE,Tourlomousis P,D?britz JHM,Gottlieb E,Latorre I,Corr SC,Mc Manus G,Ryan D,Jacobs HT,Szibor M,Xavier RJ,Braun T,Frezza C,Murphy MP,O’Neill LA.Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.Cell 2016;167:457-470.e13[PMID:27667687 DOI:10.1016/j.cell.2016.08.064]
    129 Tannahill GM,Curtis AM,Adamik J,Palsson-Mc Dermott EM,Mc Gettrick AF,Goel G,Frezza C,Bernard NJ,Kelly B,Foley NH,Zheng L,Gardet A,Tong Z,Jany SS,Corr SC,Haneklaus M,Caffrey BE,Pierce K,Walmsley S,Beasley FC,Cummins E,Nizet V,Whyte M,Taylor CT,Lin H,Masters SL,Gottlieb E,Kelly VP,Clish C,Auron PE,Xavier RJ,O’Neill LA.Succinate is an inflammatory signal that induces IL-1βthrough HIF-1α.Nature2013;496:238-242[PMID:23535595 DOI:10.1038/nature11986]
    130 Azevedo EP,Rochael NC,Guimar?es-Costa AB,de Souza-Vieira TS,Ganilho J,Saraiva EM,Palhano FL,Foguel D.A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril-and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap(NET)Formation.J Biol Chem 2015;290:22174-22183[PMID:26198639 DOI:10.1074/jbc.M115.640094]
    131 Siska PJ,Rathmell JC.T cell metabolic fitness in antitumor immunity.Trends Immunol 2015;36:257-264[PMID:25773310DOI:10.1016/j.it.2015.02.007]
    132 Chang CH,Curtis JD,Maggi LB Jr,Faubert B,Villarino AV,O’Sullivan D,Huang SC,van der Windt GJ,Blagih J,Qiu J,Weber JD,Pearce EJ,Jones RG,Pearce EL.Posttranscriptional control of T cell effector function by aerobic glycolysis.Cell 2013;153:1239-1251[PMID:23746840 DOI:10.1016/j.cell.2013.05.016]
    133 Zhang Y,Kurupati R,Liu L,Zhou XY,Zhang G,Hudaihed A,Filisio F,Giles-Davis W,Xu X,Karakousis GC,Schuchter LM,Xu W,Amaravadi R,Xiao M,Sadek N,Krepler C,Herlyn M,Freeman GJ,Rabinowitz JD,Ertl HCJ.Enhancing CD8+T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy.Cancer Cell 2017;32:377-391.e9[PMID:28898698 DOI:10.1016/j.ccell.2017.08.004]
    134 Wawman RE,Bartlett H,Oo YH.Regulatory T Cell Metabolism in the Hepatic Microenvironment.Front Immunol 2018;8:1889[PMID:29358934 DOI:10.3389/fimmu.2017.01889]
    135 Beier UH,Angelin A,Akimova T,Wang L,Liu Y,Xiao H,Koike MA,Hancock SA,Bhatti TR,Han R,Jiao J,Veasey SC,Sims CA,Baur JA,Wallace DC,Hancock WW.Essential role of mitochondrial energy metabolism in Foxp3+T-regulatory cell function and allograft survival.FASEB J 2015;29:2315-2326[PMID:25681462 DOI:10.1096/fj.14-268409]
    136 Shirabe K,Mano Y,Muto J,Matono R,Motomura T,Toshima T,Takeishi K,Uchiyama H,Yoshizumi T,Taketomi A,Morita M,Tsujitani S,Sakaguchi Y,Maehara Y.Role of tumor-associated macrophages in the progression of hepatocellular carcinoma.Surg Today 2012;42:1-7[PMID:22116397 DOI:10.1007/s00595-011-0058-8]
    137 Zhang J,Zhang Q,Lou Y,Fu Q,Chen Q,Wei T,Yang J,Tang J,Wang J,Chen Y,Zhang X,Zhang J,Bai X,Liang T.Hypoxiainducible factor-1α/interleukin-1βsignaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment.Hepatology 2018;67:1872-1889[PMID:29171040 DOI:10.1002/hep.29681]
    138 Clambey ET,Mc Namee EN,Westrich JA,Glover LE,Campbell EL,Jedlicka P,de Zoeten EF,Cambier JC,Stenmark KR,Colgan SP,Eltzschig HK.Hypoxia-inducible factor-1 alpha-dependent induction of Fox P3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa.Proc Natl Acad Sci 2012;109:E2784-E2793[PMID:22988108 DOI:10.1073/pnas.1202366109]
    139 Chang M,Hamilton JA,Scholz GM,Elsegood CL.Glycolytic control of adjuvant-induced macrophage survival:role of PI3K,MEK1/2,and Bcl-2.J Leukoc Biol 2009;85:947-956[PMID:19270084 DOI:10.1189/jlb.0908522]
    140 Sharma MD,Shinde R,Mc Gaha TL,Huang L,Holmgaard RB,Wolchok JD,Mautino MR,Celis E,Sharpe AH,Francisco LM,Powell JD,Yagita H,Mellor AL,Blazar BR,Munn DH.The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment.Sci Adv 2015;1:e1500845[PMID:26601142DOI:10.1126/sciadv.1500845]
    141 Chen W,Ma T,Shen XN,Xia XF,Xu GD,Bai XL,Liang TB.Macrophage-induced tumor angiogenesis is regulated by the TSC2-m TOR pathway.Cancer Res 2012;72:1363-1372[PMID:22287548 DOI:10.1158/0008-5472.can-11-2684]
    142 Zeng H,Yang K,Cloer C,Neale G,Vogel P,Chi H.m TORC1couples immune signals and metabolic programming to establish T(reg)-cell function.Nature 2013;499:485-490[PMID:23812589DOI:10.1038/nature12297]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700