台风“珍珠”(2006)螺旋雨带发展机制的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of development mechanism of Typhoon Chanchu(2006) spiral rainbelts
  • 作者:王咏青 ; 蔡敏敏 ; 张秀年
  • 英文作者:WANG Yongqing;CAI Minmin;ZHANG Xiunian;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD)/Key Laboratory of Meteorological Disaster,Ministry of Education((KLME))/School of Atmospheric Sciences,Nanjing University of Information Science & Technology;Nanjing Joint Center of Atmospheric Research;Yunnan Meteorological Observatory;
  • 关键词:台风 ; 数值模拟 ; 螺旋雨带 ; 发展机制
  • 英文关键词:typhoon;;numerical simulation;;spiral rainbands;;development mechanism
  • 中文刊名:NJQX
  • 英文刊名:Transactions of Atmospheric Sciences
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室/大气科学学院;南京大气科学联合研究中心;云南省气象台;
  • 出版日期:2018-11-28
  • 出版单位:大气科学学报
  • 年:2018
  • 期:v.41;No.187
  • 基金:国家自然科学基金资助项目(41875070; 41530427; 41275002);; 云南省重点研发计划-社会发展项目(2018BC007);; 北极阁开放研究基金-南京大气科学联合研究中心项目(NJCAR2018MS02);; 江苏省“333高层次人才培养工程”资助项目
  • 语种:中文;
  • 页:NJQX201806007
  • 页数:11
  • CN:06
  • ISSN:32-1803/P
  • 分类号:68-78
摘要
基于2 km分辨率的ARW-WRF数值模拟资料,讨论了台风"珍珠"(2006)螺旋雨带中对流单体及内雨带的发展机制。结果表明:模式很好地再现了台风的路径和强度。作为雨带中仅仅存在于眼壁外侧的内雨带,其传播机制与重力波、涡旋Rossby波及混合波没有联系,其可能发展机制仅与低层出流、水平风场和变形场有关。低层出流使得内雨带径向向外运动,而低层的水平风场和变形场使其形成螺旋结构。同时,就螺旋雨带中精细对流单体的发展而言,涡度收支方程定量分析表明,其主要通过两种方式获得垂直涡度:水平涡度倾斜为垂直涡度;上升运动拉伸垂直涡度。随着平流输送,对流单体在眼壁附近合并和汇聚。
        Based on the Advanced Research Weather Research and Forecast( ARW-WRF) model simulations with the grid size of 2 km,the development mechanism of the convective cells in spiral rainbands and the inner rainbands in super Typhoon Chanchu( 2006) was examined.Results showthat the WRF model can well reproduce the track and intensity of the typhoon.Development mechanism of inner rainbands that exist only on the lateral side of the eye wall is not related with the gravity waves,the vortex Rossby waves and the mixed Rossby-Gravity Waves,and it may be only associated with the low-level radial outflow,the horizontal wind field and the deformation wind field.The convective cells of inner rainbands are advected radially outward by the low-level radial outflows and deformed into spiral shapes by the low-level horizontal and deformation wind fields.In terms of the development mechanism of fine convective cells in the spiral rainbands,they acquire vertical vorticity through the tilting of horizontal vorticity and the stretching of vertical vorticity based on the quantitative analysis of vorticity budget equation.With advection transport,the convective cells in different spiral rainbands are merged and converged near the eye wall.
引文
毕明玉,沈新勇,袁媛,等,2014.2008年台风“风神”强迫次级环流的诊断分析[J].大气科学学报,37(3):354-365.Bi MY,Shen X Y,Yuan Y,et al.,2014.Diagnostic analysis of the forced secondary circulation by typhoon Fenshen in 2008[J].Trans Atmos Sci,37(3):354-365.(in Chinese).
    Chen Y S,Yau MK,2001.Spiral bands in a simulated hurricane.part I:vortex rossby wave verification[J].J Atmos Sci,58(15):2128-2145.
    ChowK C,Chan K L,Lau A K H,2002.Generation of moving spiral bands in tropical cyclones[J].J Atmos Sci,59(20):2930-2950.
    Corbosiero K L,Molinari J,Aiyyer A R,et al.,2006.The structure and evolution of hurricane elena(1985).partⅡ:convective asymmetries and evidence for vortex rossby waves[J].Mon Wea Rev,134(11):3073-3091.
    丁治英,黄海波,赵向军,等,2018.“莫拉克”台风螺旋雨带与水平涡度的关系[J].大气科学学报,41(4):454-462.Ding Z Y,Huang H B,Zhao X J et al.,2018.Relaionship of spiral rain bands and horizontal vorticity in typhoon Morakot[J].Trans Atmos Sci,41(4):454-462.(in Chinese).
    Dvorak V F,1984.Tropical cyclone intensity analysis using satellite data[R].NOAA Tech Rept,NESDIS-11:47.
    Hendricks E A,Montgomery MT,Davis C A,2004.The role of“vortical”hot towers in the formation of tropical cyclone diana(1984)[J].J Atmos Sci,61(11):1209-1232.
    Holton J R,2004.An Introduction to Dynamic Meteorology[M].Salt Lake City:Academic Press.\labelpara:mylabel1
    Kurihara Y,1976.On the development of spiral bands in a tropical cyclone[J].J Atmos Sci,33(6):940-958.
    Li Q Q,Wang Y Q,2012.A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J].Mon Wea Rev,140(9):2782-2805.
    廖玥,王咏青,周嘉陵,2018.Chanchu台风(0601)精细结果中的熵流特征分析[J].热带气象学报,34(5):685-694.Liao Y,Wang Y Q,Zhou JL,2018.Entropy flowcharacteristics of typhoon Chanchu’s(0601)fine structure[J].J Trop Meteor,34(5):685-694.(in Chinese).
    陆汉城,钟玮,张大林,2007.热带风暴中波动特征的研究进展和问题[J].大气科学,31(6):1140-1150.Lu H C,Zhong W,Zhang D L,2007.Current understanding of wave characteristics in tropical storms[J].Chin J Atmos Sci,31(6):1140-1150.(in Chinese).
    Mac Donald N J,1968.The evidence for the existence of Rossby-like waves in the hurricane vortex[J].Tellus,20A:138-150.
    闵颖,沈桐立,朱伟军,等,2010.台风“珍珠”螺旋雨带的数值模拟与诊断分析[J].大气科学学报,33(2):227-235.Min Y,Shen T L,Zhu W J,et al.,2010.Numerical simulation and diagnosis analysis of spiral rain bands in typhoon“Pearl”[J].Trans Atmos Sci,33(2):227-235.(in Chinese).
    Molinari J,Vollaro D,2010.Distribution of helicity,CAPE,and shear in tropical cyclones[J].J Atmos Sci,67(1):274-284.
    Montgomery MT,Lu C G,1997.Free waves on barotropic vortices.part I:eigenmode structure[J].J Atmos Sci,54(14):1868-1885.
    Montgomery MT,Nicholls ME,Cram T A,et al.,2006.A vortical hot tower Route to tropical cyclogenesis[J].J Atmos Sci,63(1):355-386.
    Moon Y,Nolan D S,2015a.Spiral rainbands in a numerical simulation of hurricane bill(2009).partⅠ:structures and comparisons to observations[J].J Atmos Sci,72(1):164-190.
    Moon Y,Nolan D S,2015b.Spiral rainbands in a numerical simulation of hurricane bill(2009).partⅡ:propagation of inner rainbands[J].J Atmos Sci,72(1):191-215.
    Reasor P D,Montgomery MT,Marks F D Jr,et al.,2000.Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-doppler radar[J].Mon Wea Rev,128(6):1653-1680.
    Sawada M,Iwasaki T,2010.Impacts of evaporation from raindrops on tropical cyclones.part II:features of rainbands and asymmetric structure[J].J Atmos Sci,67(1):84-96.
    Schecter D A,Dubin D H E,Fine K S,et al.,1999.Vortex crystals from 2D Euler flow:Experiment and simulation[J].Physics of Fluids,11(4):905-914.
    沈新勇,刘佳,秦南南,等,2012.台风麦莎的正压特征波动结构及其稳定性[J].大气科学学报,35(3):257-271.Shen X Y,Liu J,Qin N N,et al.,2012.Barotropic eigenvalue wave structure and stability of Typhoon Matsa[J].Trans Atmos Sci,35(3):257-271.(in Chinese).
    Smith G B,Montgomery MT,1995.Vortex axisymmetrization:Dependence on azimuthal wave-number or asymmetric radial structure changes[J].Quart J Roy Meteor Soc,121(527):1615-1650.
    王勇,丁治英,2008.台风“海棠”的螺旋雨带结构及特征[J].南京气象学院学报,31(3):352-362.Wang Y,Ding Z Y,2008.Structural and characteristic analyses of spiral rain bands around the landing of typhoon haitang[J].J Nanjing Inst Meteor,31(3):352-362.(in Chinese).
    Wang Y Q,2002a.Vortex rossby waves in a numerically simulated tropical cyclone.partⅠ:overall structure,potential vorticity,and kinetic energy budgets[J].J Atmos Sci,59(7):1213-1238.
    Wang Y Q,2002b.Vortex rossby waves in a numerically simulated tropical cyclone.partⅡ:the role in tropical cyclone structure and intensity changes[J].J Atmos Sci,59(7):1239-1262.
    Wong ML M,Chan J C L,2004.Tropical cyclone intensity in vertical wind shear[J].J Atmos Sci,61(15):1859-1876.
    张文龙,崔晓鹏,王昂生,等,2008.2001年台风榴莲生成前期对流“热塔”的数值模拟[J].热带气象学报,24(6):619-628.Zhang W L,Cui XP,Wang A S,et al.,2008.Numerical simulation of hot towers during pre-genesis stage of typhoon Durian(2001)[J].J Trop Meteor,24(6):619-628.(in Chinese).
    Zhong W,Zhang D L,2014.An eigenfrequency analysis of mixed Rossby-Gravity waves on barotropic vortices[J].J Atmos Sci,71(6):2186-2203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700