大同盆地地下水系统中碘迁移富集的生物标志物证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mobilization and Enrichment of Iodine in Groundwater from the Datong Basin:Evidences from Biomarker Study
  • 作者:关林瑞 ; 钱坤 ; 李俊霞 ; 谢先军
  • 英文作者:Guan Linrui;Qian Kun;Li Junxia;Xie Xianjun;School of Environmental Studies,China University of Geosciences(Wuhan);
  • 关键词: ; 地下水 ; 富集 ; 生物标志物 ; 大同盆地
  • 英文关键词:iodine;;groundwater;;enrichment;;biomarker;;Datong Basin
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)环境学院;
  • 出版日期:2019-01-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.184
  • 基金:国家自然科学基金项目(41772255;41521001;41372254);; 湖北省重大科技创新项目(2016ACA167)
  • 语种:中文;
  • 页:DZKQ201901026
  • 页数:8
  • CN:01
  • ISSN:42-1240/P
  • 分类号:241-248
摘要
为查明有机质微生物降解过程对地下水系统中碘迁移富集的影响,以大同盆地为研究区,对区内22组地下水样品进行了水化学和生物标志物研究。水化学分析结果表明,地下水碘质量浓度为5~1 212μg/L,其中,56.52%的地下水样品中碘质量浓度超过饮用水标准限定值150μg/L。地下水样品生物标志物分析结果显示,可提取饱和烃中存在大量"未分辨组分(UCM)";CPI_1和CPI_2分别为0.38~1.03和0.27~1.19;低相对分子质量正构烷烃无明显奇偶优势。上述生物标志物特征表明,含水层中有机质经历了强烈的微生物降解。有机质微生物降解产生的HCO_3~-通过竞争吸附,导致沉积物中吸附态碘的解吸附并在地下水中富集。此外,有机质的微生物降解有利于迁移能力强的低相对分子质量有机质或有机胶体的形成,该类有机物通过吸附或螯合作用进一步促进碘在地下水中的富集。
        To better understand the effect of the biodegradation of organic matters on iodine mobilization and enrichment in the groundwater,22 groundwater samples were collected to analyze the characteristics of hydrochemical and biomarker from the Datong Basin.The results show that the iodine concentrations of groundwater range from 5 to 1 212μg/L with 56.52%of samples exceeding the drinking water level of 150μg/L as recommended by the Chinese government.The results of biomarker of groundwater samples indicate that a large number of unresolved complex mixtures(UCM)exist in the extractable saturated hydrocarbons.The CPI_1 values for all samples range from 0.38 to 1.03 and CPI_2 values shift from 0.27 to 1.19.All samples have no odd-over-even predominance in the lower molecular weight n-alkanes.These results of biomarker analysis reveal that the organic matters in the aquifer may have gone through the process of the biodegradation.HCO_3~- produced by biodegradation of organic matters improv competitive adsorption,leading to the desorption of the adsorbed iodine in sediments and the enrichment of iodine in the groundwater.In addition,the biodegradation of organic matters is beneficial to the formation of low molecular weight organic matters or colloidal organic matters with strong ability of mobilization,and these kinds oforganic matters can further promote the mobilization of iodine in the groundwater system through adsorption or chelation.
引文
[1] De Benoist B,Mclean E,Andersson M,et al.Iodine deficiency in 2007:Global progress since 2003[J].Food Nutr.Bull.,2008,29(3):195-202.
    [2] Wong G T F,Brewer P G.The marine chemistry of iodine in anoxic basins[J].Geochimica et Cosmochimica Acta,1977,41(1):151-159.
    [3]张二勇,张福存,钱永,等.中国典型地区高碘地下水分布特征及启示[J].中国地质,2010,37(3):797-802.
    [4] Zhang E,Wang Y,Qian Y,et al.Iodine in groundwater of the North China Plain:Spatial patterns and hydrogeochemical processes of enrichment[J].Journal of Geochemical Exploration,2013,135(6):40-53.
    [5]徐芬,马腾,石柳,等.内蒙古河套平原高碘地下水的水文地球化学特征[J].水文地质工程地质,2012,39(5):8-15.
    [6] Tang Q,Xu Q,Zhang F,et al.Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province,North China[J].Journal of Geochemical Exploration,2013,135(6):117-123.
    [7] Li J,Wang Y,Guo W,et al.Factors controlling spatial variation of iodine species in groundwater of the Datong Basin,Northern China[J].Procedia Earth&Planetary Science,2013,7(4):483-486.
    [8] Li J,Wang Y,Guo W,et al.Iodine mobilization in groundwater system at Datong basin,China:Evidence from hydrochemistry and fluorescence characteristics[J].Science of the Total Environment,2014,468/469(2):738-745.
    [9] Poynter J,Eglinton G.The biomarker concept-strengths and weaknesses[J].Fresenius Journal of Analytical Chemistry,1991,339(10):725-731.
    [10]王铁冠.生物标志物地球化学研究[M].武汉:中国地质大学出版社,1990.
    [11] Mohialdeen I M J,Hakimi M H,Al-Beyati F M.Biomarker characteristics of certain crude oils and the oil-source rock correlation for the Kurdistan oilfields,Northern Iraq[J].Arabian Journal of Geosciences,2015,8(1):507-523.
    [12]李丽,刘杰,贺娟,等.2008年夏季南海北部浮游藻类生物量和群落组成特征及其影响因素:生物标记物研究[J].科学通报,2014,59(11):1016-1025.
    [13]郭金春,马海州.湖泊生物标志物与古气候环境变化的研究进展[J].盐湖研究,2008,16(4):52-58.
    [14]Xie X,Wang Y,Su C.Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong Basin,China[J].Water,Air&Soil Pollution,2012,223(2):483-498.
    [15]裴捍华,梁树雄,宁联元.大同盆地地下水中砷的富集规律及成因探讨[J].水文地质工程地质,2005,32(4):65-69.
    [16]王焰新,苏春利,谢先军,等.大同盆地地下水砷异常及其成因研究[J].中国地质,2010,37(3):771-780.
    [17]李铁锋,任明达.大同盆地晚新生代环境演化特征[J].北京大学学报:自然科学版,1993,29(4):476-483.
    [18]苏春利,王焰新.大同盆地孔隙地下水化学场的分带规律性研究[J].水文地质工程地质,2008,35(1):83-89.
    [19]Wang Y,Shvartsev S L,Su C.Genesis of arsenic/fluoride-enriched soda water:A case study at Datong,Northern China[J].Applied Geochemistry,2009,24(4):641-649.
    [20]赵美训,张玉琢,邢磊,等.南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J].中国海洋大学学报:自然科学版,2011,41(4):90-96.
    [21]窦启龙,陈践发,薛燕芬,等.实验室条件下微生物降解原油的地球化学特征研究[J].沉积学报,2005,23(3):542-547.
    [22]李华,王红旗,齐永强.土壤正构烷烃微生物降解变化实验分析[J].环境科学研究,2003,16(5):24-28.
    [23]Li J,Wang Y,Xie X,et al.Hydrogeochemistry of high iodine groundwater:A case study at the Datong Basin,Northern China[J].Environ.Sci.Process Impacts,2013,15(4):848-859.
    [24]Hu Q,Zhao P,Moran J E,et al.Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites[J].Journal of Contaminant Hydrology,2005,78(3):185-205.
    [25]Rdlinger G,Heumann K G.Transformation of iodide in natural and wastewater systems by fixation on humic Substances[J].Environmental Science&Technology,2000,34(18):3932-3936.
    [26]Shimamoto Y S,Takahashi Y,Terada Y.Formation of organic iodine supplied as iodide in a soil-water system in Chiba,Japan[J].Environmental Science&Technology,2011,45(6):2086-2092.
    [27]陆徐荣,杨磊,陆华,等.江苏平原地区(淮河流域)潜水碘含量控制因素探讨[J].地球学报,2014,35(2):211-216.
    [28]Rowland H A L,Polya D A,Lloyd J R,et al.Characterisation of organic matter in a shallow,reducing,arsenic-rich aquifer,West Bengal[J].Organic Geochemistry,2006,37(9):1101-1114.
    [29]Xie X,Wang Y,Su C,et al.Arsenic mobilization in shallow aquifers of Datong Basin:Hydrochemical and mineralogical evidences[J].Journal of Geochemical Exploration,2008,98(3):107-115.
    [30]Arakawa Y,Akiyama Y,Furukawa H,et al.Growth stimulation of iodide-oxidizingα-Proteobacteria in iodide-rich environments[J].Microbial Ecology,2012,63(3):522-531.
    [31]Amachi S,Muramatsu Y,Akiyama Y,et al.Isolation of iodideoxidizing bacteria from iodide-rich natural gas brines and seawaters[J].Microbial Ecology,2005,49(4):547-557.
    [32]Santschi P H,Xu C,Zhang S,et al.Iodine and plutonium association with natural organic matter:A review of recent advances[J].Applied Geochemistry,2016,85:121-127.
    [33]黄文丹,周立旻,郑祥民.长江口水体胶体有机碳的季节变化[J].海洋与湖沼,2013,44(5):1194-1199.
    [34]Chang H,Xu C,Schwehr K A,et al.Model of radioiodine speciation and partitioning in organic-rich and organic-poor soils from the Savannah River Site[J].Journal of Environmental Chemical Engineering,2014,2(3):1321-1330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700