Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity
  • 作者:GengYan ; Chen ; Jing-Feng ; Liu ; Yi-Cong ; Yu ; RenMing ; Liu ; GuiXin ; Zhu ; YongZhu ; Chen ; ZhanXu ; Chen ; Xue-Hua ; Wang
  • 英文作者:GengYan Chen;Jing-Feng Liu;Yi-Cong Yu;RenMing Liu;GuiXin Zhu;YongZhu Chen;ZhanXu Chen;Xue-Hua Wang;School of Optoelectronic Engineering, Guangdong Polytechnic Normal University;College of Electronic Engineering, South China Agricultural University;School of Physics and Optoelectronic Engineering, Foshan University;State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University;
  • 英文关键词:cavity quantum electrodynamics;;light-matter interaction;;photonic crystal
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:School of Optoelectronic Engineering, Guangdong Polytechnic Normal University;College of Electronic Engineering, South China Agricultural University;School of Physics and Optoelectronic Engineering, Foshan University;State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University;
  • 出版日期:2019-05-14
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China(Grants Nos.11504058,11447181,and 61475038);; the Natural Science Foundation of Guangdong Province of China(Grant No.2015A030310213);; the Science and Technology Program of Guangzhou(Grant No.201804010175)
  • 语种:英文;
  • 页:JGXG201906004
  • 页数:10
  • CN:06
  • ISSN:11-5849/N
  • 分类号:27-36
摘要
Light-matter interaction in the strong coupling regime enables light control at the single-photon level. We develop numerical method and analytical expressions to calculate the decay kinetics of an initially excited two-level quantum emitter in dielectric nanostructure and single-mode cavity, respectively. We use these methods to discover the dual effects of disorder on the stronglycoupled system composed of a single quantum dot and a photonic crystal L3 cavity. The quality factor is sensitive to disorder,while the g factor and vacuum Rabi splitting are robust against disorder. A small amount of disorder may either decrease or increase the light localization and the light-matter interaction. Our methods offer flexible and efficient theoretical tools for the investigation of light-matter interaction, especially cavity quantum electrodynamics. Our findings significantly lower the requirements for optimization effort and fabrication precision and open up many promising practical possibilities.
        Light-matter interaction in the strong coupling regime enables light control at the single-photon level. We develop numerical method and analytical expressions to calculate the decay kinetics of an initially excited two-level quantum emitter in dielectric nanostructure and single-mode cavity, respectively. We use these methods to discover the dual effects of disorder on the stronglycoupled system composed of a single quantum dot and a photonic crystal L3 cavity. The quality factor is sensitive to disorder,while the g factor and vacuum Rabi splitting are robust against disorder. A small amount of disorder may either decrease or increase the light localization and the light-matter interaction. Our methods offer flexible and efficient theoretical tools for the investigation of light-matter interaction, especially cavity quantum electrodynamics. Our findings significantly lower the requirements for optimization effort and fabrication precision and open up many promising practical possibilities.
引文
1 G.Khitrova,H.M.Gibbs,M.Kira,S.W.Koch,and A.Scherer,Nat.Phys.2,81(2006).
    2 P.Lodahl,S.Mahmoodian,and S.Stobbe,Rev.Mod.Phys.87,347(2015),arXiv:1312.1079.
    3 P.T?rm?,and W.L.Barnes,Rep.Prog.Phys.78,013901(2015),arXiv:1405.1661.
    4 D.S.Dovzhenko,S.V.Ryabchuk,Y.P.Rakovich,and I.R.Nabiev,Nanoscale 10,3589(2018).
    5 H.Walther,B.T.H.Varcoe,B.G.Englert,and T.Becker,Rep.Prog.Phys.69,1325(2006).
    6 B.Lounis,and M.Orrit,Rep.Prog.Phys.68,1129(2005).
    7 D.E.Chang,V.Vuleti?,and M.D.Lukin,Nat.Photon.8,685(2014).
    8 H.J.Kimble,Nature 453,1023(2008),arXiv:0806.4195.
    9 D.Sanvitto,and S.Kéna-Cohen,Nat.Mater.15,1061(2016).
    10 R.Liu,Z.K.Zhou,Y.C.Yu,T.Zhang,H.Wang,G.Liu,Y.Wei,H.Chen,and X.H.Wang,Phys.Rev.Lett.118,237401(2017).
    11 Y.Akahane,T.Asano,B.S.Song,and S.Noda,Nature 425,944(2003).
    12 B.S.Song,S.Noda,T.Asano,and Y.Akahane,Nat.Mater.4,207(2005).
    13 J.Joannopoulos,S.Johnson,J.Winn,and R.Meade,Photonic Crystals:Molding the Flow of Light(Princeton University Press,Princeton,2008).
    14 T.Yoshie,A.Scherer,J.Hendrickson,G.Khitrova,H.M.Gibbs,G.Rupper,C.Ell,O.B.Shchekin,and D.G.Deppe,Nature 432,200(2004).
    15 K.Hennessy,A.Badolato,M.Winger,D.Gerace,M.Atatüre,S.Gulde,S.F?lt,E.L.Hu,and A.Imamo?lu,Nature 445,896(2007).
    16 D.Englund,A.Faraon,I.Fushman,N.Stoltz,P.Petroff,and J.Vu?kovi?,Nature 450,857(2007).
    17 A.Faraon,I.Fushman,D.Englund,N.Stoltz,P.Petroff,and J.Vu?kovi?,Nat.Phys.4,859(2008),arXiv:0804.2740.
    18 M.Nomura,N.Kumagai,S.Iwamoto,Y.Ota,and Y.Arakawa,Nat.Phys.6,279(2010),arXiv:0905.3063.
    19 Y.Sato,Y.Tanaka,J.Upham,Y.Takahashi,T.Asano,and S.Noda,Nat.Photon.6,56(2012).
    20 H.Kim,T.C.Shen,K.Roy-Choudhury,G.S.Solomon,and E.Waks,Phys.Rev.Lett.113,027403(2014),arXiv:1310.3638.
    21 Y.Ota,R.Ohta,N.Kumagai,S.Iwamoto,and Y.Arakawa,Phys.Rev.Lett.114,143603(2015),arXiv:1503.01855.
    22 T.M.Sweeney,S.G.Carter,A.S.Bracker,M.Kim,C.S.Kim,L.Yang,P.M.Vora,P.G.Brereton,E.R.Cleveland,and D.Gammon,Nat.Photon.8,442(2014),arXiv:1402.4494.
    23 A.Lyasota,S.Borghardt,C.Jarlov,B.Dwir,P.Gallo,A.Rudra,and E.Kapon,J.Cryst.Growth 414,192(2015).
    24 C.Jarlov,é.Wodey,A.Lyasota,M.Calic,P.Gallo,B.Dwir,A.Rudra,and E.Kapon,Phys.Rev.Lett.117,076801(2016).
    25 S.Lichtmannecker,M.Florian,T.Reichert,M.Blauth,M.Bichler,F.Jahnke,J.J.Finley,C.Gies,and M.Kaniber,Sci.Rep.7,7420(2017),arXiv:1602.03998.
    26 D.Englund,B.Shields,K.Rivoire,F.Hatami,J.Vuckovic,H.Park,and M.D.Lukin,Nano Lett.10,3922(2010),arXiv:1005.2204.
    27 A.Faraon,C.Santori,Z.Huang,V.M.Acosta,and R.G.Beausoleil,Phys.Rev.Lett.109,033604(2012),arXiv:1202.0806.
    28 B.J.M.Hausmann,B.J.Shields,Q.Quan,Y.Chu,N.P.de Leon,R.Evans,M.J.Burek,A.S.Zibrov,M.Markham,D.J.Twitchen,H.Park,M.D.Lukin,and M.Lonc R,Nano Lett.13,5791(2013).
    29 S.Wu,S.Buckley,J.R.Schaibley,L.Feng,J.Yan,D.G.Mandrus,F.Hatami,W.Yao,J.Vu?kovi?,A.Majumdar,and X.Xu,Nature 520,69(2015).
    30 A.Gopinath,E.Miyazono,A.Faraon,and P.W.K.Rothemund,Nature 535,401(2016).
    31 F.Pyatkov,V.Fütterling,S.Khasminskaya,B.S.Flavel,F.Hennrich,M.M.Kappes,R.Krupke,and W.H.P.Pernice,Nat.Photon.10,420(2016).
    32 M.S.Hwang,H.R.Kim,K.H.Kim,K.Y.Jeong,J.S.Park,J.H.Choi,J.H.Kang,J.M.Lee,W.I.Park,J.H.Song,M.K.Seo,and H.G.Park,Nano Lett.17,1892(2017).
    33 Y.Ota,R.Moriya,N.Yabuki,M.Arai,M.Kakuda,S.Iwamoto,T.Machida,and Y.Arakawa,Appl.Phys.Lett.110,223105(2017).
    34 A.E.Schlather,N.Large,A.S.Urban,P.Nordlander,and N.J.Halas,Nano Lett.13,3281(2013).
    35 G.Zengin,M.Wers?ll,S.Nilsson,T.J.Antosiewicz,M.K?ll,and T.Shegai,Phys.Rev.Lett.114,157401(2015),arXiv:1501.02123.
    36 X.Chen,Y.H.Chen,J.Qin,D.Zhao,B.Ding,R.J.Blaikie,and M.Qiu,Nano Lett.17,3246(2017),arXiv:1607.07620.
    37 B.M.Garraway,Philos.Trans.R.Soc.A-Math.Phys.Eng.Sci.369,1137(2011).
    38 W.J.Fan,Z.B.Hao,Z.Li,Y.S.Zhao,and Y.Luo,J.Lightw.Technol.28,1455(2010).
    39 S.L.Portalupi,M.Galli,M.Belotti,L.C.Andreani,T.F.Krauss,and L.O’Faolain,Phys.Rev.B 84,045423(2011).
    40 M.Minkov,U.P.Dharanipathy,R.Houdré,and V.Savona,Opt.Express 21,28233(2013).
    41 H.Hagino,Y.Takahashi,Y.Tanaka,T.Asano,and S.Noda,Phys.Rev.B 79,085112(2009).
    42 T.Asano,B.S.Song,and S.Noda,Opt.Express 14,1996(2006).
    43 Y.Taguchi,Y.Takahashi,Y.Sato,T.Asano,and S.Noda,Opt.Express 19,11916(2011).
    44 R.Benevides,F.G.S.Santos,G.O.Luiz,G.S.Wiederhecker,and T.P.M.Alegre,Sci.Rep.7,2491(2017),arXiv:1701.03410.
    45 Y.Akahane,T.Asano,B.S.Song,and S.Noda,Opt.Express 13,1202(2005).
    46 Y.Takahashi,H.Hagino,Y.Tanaka,B.S.Song,T.Asano,and S.Noda,Opt.Express 15,17206(2007).
    47 Y.Tanaka,T.Asano,and S.Noda,J.Lightwave Technol.26,1532(2008).
    48 Y.Takahashi,Y.Tanaka,H.Hagino,T.Sugiya,Y.Sato,T.Asano,and S.Noda,Opt.Express 17,18093(2009).
    49 Y.Lai,S.Pirotta,G.Urbinati,D.Gerace,M.Minkov,V.Savona,A.Badolato,and M.Galli,Appl.Phys.Lett.104,241101(2014).
    50 D.Wang,Z.Yu,Y.Liu,X.Guo,C.Shu,S.Zhou,and J.Zhang,J.Opt.15,125102(2013).
    51 M.Minkov,and V.Savona,Sci.Rep.4,5124(2014).
    52 P.W.Anderson,Phys.Rev.109,1492(1958).
    53 J.Topolancik,B.Ilic,and F.Vollmer,Phys.Rev.Lett.99,253901(2007).
    54 A.Lagendijk,B.van Tiggelen,and D.S.Wiersma,Phys.Today 62,24(2009).
    55 D.S.Wiersma,Nat.Photon.7,188(2013).
    56 P.D.García,G.Kir?ansk?,A.Javadi,S.Stobbe,and P.Lodahl,Phys.Rev.B 96,144201(2017),arXiv:1709.10310.
    57 T.Crane,O.J.Trojak,J.P.Vasco,S.Hughes,and L.Sapienza,ACSPhoton.4,2274(2017).
    58 L.Sapienza,H.Thyrrestrup,S.Stobbe,P.D.Garcia,S.Smolka,and P.Lodahl,Science 327,1352(2010),arXiv:1003.2525.
    59 J.Liu,P.D.Garcia,S.Ek,N.Gregersen,T.Suhr,M.Schubert,J.M?rk,S.Stobbe,and P.Lodahl,Nat.Nanotech.9,285(2014).
    60 P.D.García,and P.Lodahl,Annal.Phys.529,1600351(2017),arXiv:1611.02038.
    61 H.Thyrrestrup,S.Smolka,L.Sapienza,and P.Lodahl,Phys.Rev.Lett.108,113901(2012),arXiv:1112.5674.
    62 J.Gao,S.Combrie,B.Liang,P.Schmitteckert,G.Lehoucq,S.Xavier,X.A.Xu,K.Busch,D.L.Huffaker,A.De Rossi,and C.W.Wong,Sci.Rep.3,1994(2013),arXiv:1306.2042.
    63 J.P.Vasco,and S.Hughes,Phys.Rev.B 95,224202(2017),arXiv:1701.09139.
    64 J.P.Vasco,and S.Hughes,ACS Photon.5,1262(2018).
    65 X.H.Wang,R.Wang,B.Y.Gu,and G.Z.Yang,Phys.Rev.Lett.88,093902(2002).
    66 X.H.Wang,B.Y.Gu,R.Wang,and H.Q.Xu,Phys.Rev.Lett.91,113904(2003).
    67 G.Chen,Y.C.Yu,X.L.Zhuo,Y.G.Huang,H.Jiang,J.F.Liu,C.J.Jin,and X.H.Wang,Phys.Rev.B 87,195138(2013).
    68 E.M.Purcell,Phys.Rev.69,681(1946).
    69 A.R.A.Chalcraft,S.Lam,D.O’Brien,T.F.Krauss,M.Sahin,D.Szymanski,D.Sanvitto,R.Oulton,M.S.Skolnick,A.M.Fox,D.M.Whittaker,H.Y.Liu,and M.Hopkinson,Appl.Phys.Lett.90,241117(2007).
    70 A.Taflove,and S.Hagness,Computational Electrodynamics:The Finite-Difference Time-Domain Method(third edition)(Artech House,London,2005).
    71 G.Chen,J.F.Liu,H.Jiang,X.L.Zhuo,Y.C.Yu,C.Jin,and X.H.Wang,Nanoscale Res.Lett.8,187(2013).
    72 S.G.Johnson,M.Ibanescu,M.A.Skorobogatiy,O.Weisberg,J.D.Joannopoulos,and Y.Fink,Phys.Rev.E 65,066611(2002).
    73 L.Ramunno,and S.Hughes,Phys.Rev.B 79,161303(2009).
    74 A.Badolato,K.Hennessy,M.Atatüre,J.Dreiser,E.Hu,P.M.Petroff,and A.Imamoglu,Science 308,1158(2005).
    75 N.Mann,A.Javadi,P.D.García,P.Lodahl,and S.Hughes,Phys.Rev.A 92,023849(2015),arXiv:1505.02836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700