Non-parametric reconstruction of growth index via Gaussian processes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Non-parametric reconstruction of growth index via Gaussian processes
  • 作者:Zhao-Yu ; Yin ; Hao ; Wei
  • 英文作者:Zhao-Yu Yin;Hao Wei;School of Physics, Beijing Institute of Technology;
  • 英文关键词:cosmology;;dark energy;;modified gravity;;growth index;;Gaussian processes
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:School of Physics, Beijing Institute of Technology;
  • 出版日期:2019-04-29 16:37
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.11575022,and 11175016)
  • 语种:英文;
  • 页:JGXG201909012
  • 页数:10
  • CN:09
  • ISSN:11-5849/N
  • 分类号:114-123
摘要
The accelerated cosmic expansion could be due to dark energy within general relativity(GR), or modified gravity. Differentiating between them using both the expansion history and growth history has attracted considerable attention. In the literature, the growth index γ has been found useful to distinguish these two scenarios. This work aims to consider the non-parametric reconstruction of the growth index γ as a function of redshift z from the latest observational data as of July 2018 via Gaussian processes. We found that f(R) theories and dark energy models within GR(especially ΛCDM) are inconsistent with the results in the moderate redshift range far beyond 3σ confidence level. A modified gravity scenario different from f(R) theories is favored. However, these results can also be due to other non-trivial possibilities in which dark energy models within GR(especially ΛCDM) and f(R) theories may still survive. In all cases, our results suggest that new physics is required.
        The accelerated cosmic expansion could be due to dark energy within general relativity(GR), or modified gravity. Differentiating between them using both the expansion history and growth history has attracted considerable attention. In the literature, the growth index γ has been found useful to distinguish these two scenarios. This work aims to consider the non-parametric reconstruction of the growth index γ as a function of redshift z from the latest observational data as of July 2018 via Gaussian processes. We found that f(R) theories and dark energy models within GR(especially ΛCDM) are inconsistent with the results in the moderate redshift range far beyond 3σ confidence level. A modified gravity scenario different from f(R) theories is favored. However, these results can also be due to other non-trivial possibilities in which dark energy models within GR(especially ΛCDM) and f(R) theories may still survive. In all cases, our results suggest that new physics is required.
引文
1 A.G.Riess,A.V.Filippenko,P.Challis,A.Clocchiatti,A.Diercks,P.M.Garnavich,R.L.Gilliland,C.J.Hogan,S.Jha,R.P.Kirshner,B.Leibundgut,M.M.Phillips,D.Reiss,B.P.Schmidt,R.A.Schommer,R.C.Smith,J.Spyromilio,C.Stubbs,N.B.Suntzeff,and J.Tonry,Astron.J.116,1009(1998).
    2 S.Perlmutter,G.Aldering,G.Goldhaber,R.A.Knop,P.Nugent,P.G.Castro,S.Deustua,S.Fabbro,A.Goobar,D.E.Groom,I.M.Hook,A.G.Kim,M.Y.Kim,J.C.Lee,N.J.Nunes,R.Pain,C.R.Pennypacker,R.Quimby,C.Lidman,R.S.Ellis,M.Irwin,R.G.McMahon,P.RuizLapuente,N.Walton,B.Schaefer,B.J.Boyle,A.V.Filippenko,T.Matheson,A.S.Fruchter,N.Panagia,H.J.M.Newberg,W.J.Couch,and T.S.C.Project,Astrophys.J.517,565(1999).
    3 M.Ishak,Living Rev.Relativ.22,1(2019),arXiv:1806.10122.
    4 L.Amendola,S.Appleby,A.Avgoustidis,D.Bacon,T.Baker,M.Baldi,N.Bartolo,A.Blanchard,C.Bonvin,S.Borgani,E.Branchini,C.Burrage,S.Camera,C.Carbone,L.Casarini,M.Cropper,C.de Rham,J.P.Dietrich,C.Di Porto,R.Durrer,A.Ealet,P.G.Ferreira,F.Finelli,J.Garc′?a-Bellido,T.Giannantonio,L.Guzzo,A.Heavens,L.Heisenberg,C.Heymans,H.Hoekstra,L.Hollenstein,R.Holmes,Z.Hwang,K.Jahnke,T.D.Kitching,T.Koivisto,M.Kunz,G.La Vacca,E.Linder,M.March,V.Marra,C.Martins,E.Majerotto,D.Markovic,D.Marsh,F.Marulli,R.Massey,Y.Mellier,F.Montanari,D.F.Mota,N.J.Nunes,W.Percival,V.Pettorino,C.Porciani,C.Quercellini,J.Read,M.Rinaldi,D.Sapone,I.Sawicki,R.Scaramella,C.Skordis,F.Simpson,A.Taylor,S.Thomas,R.Trotta,L.Verde,F.Vernizzi,A.Vollmer,Y.Wang,J.Weller,and T.Zlosnik,Living Rev.Relativ.21,2(2018),arXiv:1606.00180.
    5 A.Joyce,B.Jain,J.Khoury,and M.Trodden,Phys.Rep.568,1(2015),arXiv:1407.0059.
    6 T.Clifton,P.G.Ferreira,A.Padilla,and C.Skordis,Phys.Rep.513,1(2012),arXiv:1106.2476.
    7 E.V.Linder,Phys.Rev.D 72,043529(2005).
    8 E.V.Linder,and R.N.Cahn,Astroparticle Phys.28,481(2007).
    9 H.Wei,Phys.Lett.B 664,1(2008),arXiv:0802.4122.
    10 H.Wei,and S.N.Zhang,Phys.Rev.D 78,023011(2008),arXiv:0803.3292.
    11 P.J.E.Peebles,Large-Scale Structure of the Univers(Princeton University Press,Princeton,1980);P.J.E.Peebles,Astrophys.J.284,439(1984).
    12 O.Lahav,P.B.Lilje,J.R.Primack,and M.J.Rees,Mon.Not.R.Astron.Soc.251,128(1991).
    13 L.Wang,and P.J.Steinhardt,Astrophys.J.508,483(1998).
    14 A.Lue,R.Scoccimarro,and G.D.Starkman,Phys.Rev.D 69,124015(2004).
    15 R.Gannouji,B.Moraes,and D.Polarski,J.Cosmol.Astropart.Phys.2009(02),034(2009),arXiv:0809.3374.
    16 S.Tsujikawa,R.Gannouji,B.Moraes,and D.Polarski,Phys.Rev.D80,084044(2009),arXiv:0908.2669.
    17 A.Shafieloo,A.G.Kim,and E.V.Linder,Phys.Rev.D 87,023520(2013),arXiv:1211.6128.
    18 S.Tsujikawa,Lect.Notes Phys.800,99(2010).
    19 C.E.Rasmussen,and C.K.I.Williams,Gaussian Processes for Machine Learning,(MIT Press,Cambridge,2006).
    20 M.Seikel,C.Clarkson,and M.Smith,J.Cosmol.Astropart.Phys.2012(06),036(2012),arXiv:1204.2832.
    21 J.E.Gonz′alez,J.S.Alcaniz,and J.C.Carvalho,J.Cosmol.Astropart.Phys.2016(04),016(2016),arXiv:1602.01015.
    22 J.E.Gonzalez,J.S.Alcaniz,and J.C.Carvalho,J.Cosmol.Astropart.Phys.2017(08),008(2017),arXiv:1702.02923.
    23 S.Nesseris,G.Pantazis,and L.Perivolaropoulos,Phys.Rev.D 96,023542(2017),arXiv:1703.10538.
    24 L.Kazantzidis,and L.Perivolaropoulos,Phys.Rev.D 97,103503(2018),arXiv:1803.01337.
    25 T.Chiba,and R.Takahashi,Phys.Rev.D 75,101301(2007).
    26 A.A.Starobinsky,Jetp Lett.68,757(1998).
    27 M.J.Zhang,and H.Li,Eur.Phys.J.C 78,460(2018),arXiv:1806.02981.
    28 J.Maga?na,M.H.Amante,M.A.Garcia-Aspeitia,and V.Motta,Mon.Not.R.Astron.Soc.476,1036(2018),arXiv:1706.09848.
    29 J.J.Geng,R.Y.Guo,A.Z.Wang,J.F.Zhang,and X.Zhang,Commun.Theor.Phys.70,445(2018),arXiv:1806.10735.
    30 H.Wei,and S.N.Zhang,Phys.Lett.B 644,7(2007);H.Wei,and S.N.Zhang,Phys.Lett.B 654,139(2007),arXiv:0704.3330.
    31 M.Seikel,and C.Clarkson,arXiv:1311.6678.
    32 R.G.Cai,and T.Yang,Phys.Rev.D 95,044024(2017),arXiv:1608.08008;T.Yang,Z.K.Guo,and R.G.Cai,Phys.Rev.D 91,123533(2015),arXiv:1505.04443.
    33 N.Aghanim,et al.(Planck Collaboration),arXiv:1807.06209.
    34 Y.Akrami,et al.(Planck Collaboration),arXiv:1807.06205.
    35 A.G.Riess,S.Casertano,W.Yuan,L.Macri,B.Bucciarelli,M.G.Lattanzi,J.W.MacKenty,J.B.Bowers,W.K.Zheng,A.V.Filippenko,C.Huang,and R.I.Anderson,Astrophys.J.861,126(2018),arXiv:1804.10655.
    36 U.Alam,V.Sahni,T.D.Saini,and A.A.Starobinsky,arXiv:astroph/0406672.
    37 H.Wei,N.Tang,and S.N.Zhang,Phys.Rev.D 75,043009(2007).
    38 M.Seikel,S.Yahya,R.Maartens,and C.Clarkson,Phys.Rev.D 86,083001(2012),arXiv:1205.3431.
    39 D.M.Scolnic,D.O.Jones,A.Rest,Y.C.Pan,R.Chornock,R.J.Foley,M.E.Huber,R.Kessler,G.Narayan,A.G.Riess,S.Rodney,E.Berger,D.J.Brout,P.J.Challis,M.Drout,D.Finkbeiner,R.Lunnan,R.P.Kirshner,N.E.Sanders,E.Schlafly,S.Smartt,C.W.Stubbs,J.Tonry,W.M.Wood-Vasey,M.Foley,J.Hand,E.Johnson,W.S.Burgett,K.C.Chambers,P.W.Draper,K.W.Hodapp,N.Kaiser,R.P.Kudritzki,E.A.Magnier,N.Metcalfe,F.Bresolin,E.Gall,R.Kotak,M.McCrum,and K.W.Smith,Astrophys.J.859,101(2018),arXiv:1710.00845.
    40 H.K.Deng,and H.Wei,Eur.Phys.J.C 78,755(2018),arXiv:1806.02773.
    41 Z.Y.Yin,and H.Wei,arXiv:1902.00289.
    42 H.Wei,J.Liu,Z.C.Chen,and X.P.Yan,Phys.Rev.D 88,043510(2013),arXiv:1306.1364.
    43 E.Jennings,C.M.Baugh,B.Li,G.B.Zhao,and K.Koyama,Mon.Not.R.Astron.Soc.425,2128(2012),arXiv:1205.2698.
    44 S.Tsujikawa,Phys.Rev.D 76,023514(2007),arXiv:0705.1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700