Resolution of a discrepancy of magnetic mechanism for Elinvar anomaly in Fe-Ni based alloys
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resolution of a discrepancy of magnetic mechanism for Elinvar anomaly in Fe-Ni based alloys
  • 作者:Fangyu ; Qin ; Wenlong ; Xiao ; Fengshuang ; Lu ; Yuanchao ; Ji ; Xinqing ; Zhao ; Xiaobing ; Ren
  • 英文作者:Fangyu Qin;Wenlong Xiao;Fengshuang Lu;Yuanchao Ji;Xinqing Zhao;Xiaobing Ren;School of Materials Science and Engineering, Beihang University;Functional Materials Research Institute, Central Iron and Steel Research Institute;Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi'an Jiaotong University;
  • 英文关键词:Fe-Ni based alloys;;Elastic modulus;;Magnetism;;Strain glass transition;;Nanodomains
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:School of Materials Science and Engineering, Beihang University;Functional Materials Research Institute, Central Iron and Steel Research Institute;Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi'an Jiaotong University;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported financially by the National Natural Science Foundation of China (Nos. 51431007, 51831006 and 51771012)
  • 语种:英文;
  • 页:CLKJ201903023
  • 页数:6
  • CN:03
  • ISSN:21-1315/TG
  • 分类号:170-175
摘要
Fe-Ni based Elinvar alloys performing temperature-independent elastic modulus over a wide temperature range have found wide and significant applications. Although numerous models involved with magnetism have been proposed to explain the Elinvar anomaly, some of the puzzles concerning the anomaly have not been fully understood. In this work, a remarkable discrepancy between the inflection temperature of modulus and the Curie temperature in a typical Fe-Ni-Cr Elinvar alloy was found,challenging the magnetic mechanism for Elinvar anomaly. Microstructural characterization and dynamic mechanical analysis demonstrate the occurrence of a strain glass transition with continuous formation of nanodomains. Accompanying such a transition, the gradual softening in the elastic modulus of austenite offsets the modulus hardening due to the vibrational anharmonicity of nanodomains upon cooling, leading to the Elinvar effect. As a result, the inflection temperature of modulus corresponds to the initiation of nanodomains' formation instead of magnetic transition. Our findings specify the association of Elinvar anomaly with structural aspects, and provide new insights into the mechanism of Elinvar anomaly in Fe-Ni based alloy.
        Fe-Ni based Elinvar alloys performing temperature-independent elastic modulus over a wide temperature range have found wide and significant applications. Although numerous models involved with magnetism have been proposed to explain the Elinvar anomaly, some of the puzzles concerning the anomaly have not been fully understood. In this work, a remarkable discrepancy between the inflection temperature of modulus and the Curie temperature in a typical Fe-Ni-Cr Elinvar alloy was found,challenging the magnetic mechanism for Elinvar anomaly. Microstructural characterization and dynamic mechanical analysis demonstrate the occurrence of a strain glass transition with continuous formation of nanodomains. Accompanying such a transition, the gradual softening in the elastic modulus of austenite offsets the modulus hardening due to the vibrational anharmonicity of nanodomains upon cooling, leading to the Elinvar effect. As a result, the inflection temperature of modulus corresponds to the initiation of nanodomains' formation instead of magnetic transition. Our findings specify the association of Elinvar anomaly with structural aspects, and provide new insights into the mechanism of Elinvar anomaly in Fe-Ni based alloy.
引文
[1]C.E.Guillaume,Proc.Phys.Soc.32(1919)374-404.
    [2]R.W.Cahn,Notes Rec.R.Soc.59(2005)145-153.
    [3]E.F.Wasserman,Handbook of Ferromagnetic Materials,Elsevier,Berlin,1990,pp.237-322.
    [4]G.A.Saunders,Atti Accademia Peloritana dei Pericolanti Classe I di Scienze Fis,Mater.e Nat.LXXI(1993)29-52.
    [5]E.P.Wohlfarth,J.Phys.F 6(1976)L59-L63.
    [6]E.P.Wohlfarth,Physica Status Solidi A:Appl.Res.10(1972)K39-K42.
    [7]G.Hausch,J.Magn.Magn.Mater.10(1979)163-169.
    [8]G.Hausch,Physica Status Solidi A:Appl.Res.15(1973)501-510.
    [9]M.van Schilfgaarde,I.A.Abrikosov,B.Johansson,Nature 400(1999)46-49.
    [10]R.J.Weiss,Proc.Phys.Soc.82(1963)281.
    [11]F.R.Sami Mahmood,A.F.Lehlooh,S.Mahmoud,Abhath al Yarmouk,Pure Sci.Eng.4(1995)61-76.
    [12]N.Cowlam,A.R.Wildes,J.Phys.15(2003)521.
    [13]J.W.Lynn,N.Rosov,M.Acet,H.Bach,J.Appl.Phys.75(1994)6069-6071.
    [14]O.A.Khomenko,I.F.Khil’kevich,Met.Sci.Heat Treat.23(1981)211-214.
    [15]G.Hausch,Physica Status Solidi A:Appl.Res.29(1975)K149-K153.
    [16]G.Hausch,J.Phys.F 6(1976)1015.
    [17]V.M.Nadutov,A.I.Ustinov,S.A.Demchenkov,Y.O.Svystunov,V.S.Skorodzievski,J.Mater.Sci.Technol.31(2015)1079-1086.
    [18]Z.Kaczkowski,Physica B+C 149(1988)232-239.
    [19]E.Hayes,A.Miodownik,IEEE Trans.Magn.11(1975)1347-1349.
    [20]T.Yasunori,S.Yuki,M.Hiroshi,J.Jpn.Inst.Met.34(1970)417-421.
    [21]J.B.Wachtman,W.E.Tefft,D.G.Lam,C.S.Apstein,Phys.Rev.122(1961)1754-1759.
    [22]Y.Zhou,D.Xue,Y.Tian,X.Ding,S.Guo,K.Otsuka,J.Sun,X.Ren,Phys.Rev.Lett.112(2014),025701.
    [23]J.Zhang,Y.Wang,X.Ding,Z.Zhang,Y.Zhou,X.Ren,D.Wang,Y.Ji,M.Song,K.Otsuka,J.Sun,Phys.Rev.B 84(2011),214201.
    [24]Y.Wang,D.Wang,Y.Zhou,J.Zhang,D.Xue,X.Ren,in:A.Saxena,A.Planes(Eds.),Modeling and Applications,Springer Berlin Heidelberg,Berlin,Heidelberg,2014,pp.271-288.
    [25]S.Sarkar,X.Ren,K.Otsuka,Phys.Rev.Lett.(2005)95,205702.
    [26]X.Ren,Phys.Status Solidi B 251(2014)1982-1992.
    [27]J.A.Mydosh,London,in:Spin Glass:An Experimental Introduction,Taylor&Francis,1993.
    [28]J.C.Qiao,J.M.Pelletier,J.Mater.Sci.Technol.30(2014)523-545.
    [29]X.Ren,in:T.Kakeshita,T.Fukuda,A.Saxena,A.Planes(Eds.),Disorder and Strain-Induced Complexity in Functional Materials,Springer Berlin Heidelberg,Berlin,Heidelberg,2012,pp.201-225.
    [30]K.Otsuka,X.Ren,Prog.Mater.Sci.50(2005)511-678.
    [31]C.Zener,Elasticity and Anelasticity of Metals,University of Chicago Press,Chicago,1948.
    [32]Y.L.Hao,H.L.Wang,T.Li,J.M.Cairney,A.V.Ceguerra,Y.D.Wang,Y.Wang,D.Wang,E.G.Obbard,S.J.Li,R.Yang,J.Mater.Sci.Technol.32(2016)705-709.
    [33]Y.Wang,J.Gao,H.Wu,S.Yang,X.Ding,D.Wang,X.Ren,Y.Wang,X.Song,J.Gao,Sci.Rep.4(2014)3995.
    [34]L.Zhang,D.Wang,X.Ren,Y.Wang,Sci.Rep.5(2015)11477.
    [35]Y.Ji,X.Ding,T.Lookman,K.Otsuka,X.Ren,Phys.Rev.B 87(2013),104110.
    [36]J.Zhang,D.Xue,X.Cai,X.Ding,X.Ren,J.Sun,Acta Mater.120(2016)130-137.
    [37]T.B.Massalski,D.E.Laughlin,Calphad 33(2009)3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700