喀斯特漏斗坡地土壤有机碳特征、风化侵蚀及稀土元素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial distribution characteristics of soil organic carbon and analysis of the weathering erosion and REE in karst funnel slope
  • 作者:冯晓静 ; 张涛 ; 张晓娟 ; 温月花 ; 熊凯 ; 李亚翠 ; 季宏兵
  • 英文作者:FENG Xiao-jing;ZHANG Tao;ZHANG Xiao-juan;WEN Yue-hua;XIONG Kai;LI Ya-cui;JI Hong-bing;Key Laboratory of Metropolitan Eco-Environment Processes,College of Resource Environment and Tourism,Capital Normal University;School of Energy and Environmental Engineering,University of Science and Technology Beijing;
  • 关键词:西南喀斯特 ; 土壤有机碳 ; 稳定碳同位素 ; C_3/C_4植物相对丰度 ; 风化侵蚀 ; 稀土元素
  • 英文关键词:the southwest karst;;soil organic carbon;;stable carbon isotope;;relative abundance of C_3/C_4 plants;;weathering erosion;;REE
  • 中文刊名:DQHX
  • 英文刊名:Geochimica
  • 机构:首都师范大学资源环境与旅游学院首都圈生态环境过程重点实验室;北京科技大学能源与环境工程学院;
  • 出版日期:2019-05-26
  • 出版单位:地球化学
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41473122,41073096);; 国家重点基础研究发展计划项目(2013CB956702)
  • 语种:中文;
  • 页:DQHX201903003
  • 页数:12
  • CN:03
  • ISSN:44-1398/P
  • 分类号:39-50
摘要
以西南喀斯特地区喀斯特漏斗坡地2个土壤剖面为研究对象,通过测定土壤部分物理化学属性、土壤有机碳含量分布特征、δ~(13)C值、几种土壤化学风化指标及稀土元素参数特征,探讨土壤侵蚀和沉积过程中土壤有机碳及其稳定碳同位素的动态变化及分布特征,同时利用土壤δ~(13)C值反演了C_3/C_4植被的变化历史。结果显示,山腰和山脚2个土壤剖面样品的土壤有机碳含量范围分别为4.17%~8.91%和2.37%~6.33%,山腰含量较高;δ~(13)C值变化范围分别为-18.9‰~-15.6‰和-22.1‰~-17.0‰,均随土壤深度的增加先增大后减小;利用土壤δ~(13)C值反演C_3/C_4植被的变化历史,2个剖面表现出相似的变化趋势;Na/K比值与I_(CIA)的变化特征呈显著的负相关关系,R~2分别为0.67和0.98,表明该类红土中Na/K比值不仅能代表风化强度,且可能与侵蚀大小有关;常用的土壤风化发育指标表现为很好的协同作用,显示剖面土壤的形成是由基岩化学风化而成;稀土元素球粒陨石标准化之后显示Ce异常,Eu负异常,2个剖面δCe变化趋势基本一致,表明2个剖面经历了相似的风化迁移过程。
        Two different typical mountain slope soil profiles in karst areas were selected as a case to study the effect of soil erosion and deposition on dynamics of soil organic carbon(SOC)and inversion of the C_3/C_4 vegetation change history by determining certain properties.Theδ~(13)C value of the soils and several soil chemical weathering indexes at different topographic positions were determined.The results show that SOC contents of two soil profiles are 4.17%–8.91% and 2.37%–6.33%in the mountainside and at the bottom,respectively,and the mountainside content is higher than that at the bottom.Theδ~(13)C values range respectively,from-18.9‰to-15.6‰and-22.1‰to-17.0‰,both of which increase with the gradient of profiles and then decrease.Inversion of C_3/C_4 vegetation change history from the the soil of theδ~(13)C values showes the two sections have a similar tendency.Variation in the values of the Na/K and chemical index of alteration(I_(CIA))show a significantly negative correlation.The correlation coefficient R~2 were 0.67 and 0.98.This showes that the values of Na/K can not only indicate the weathering intensity,but also the extent of erosion.Indexes based on macroelements of soil,which have good synergy,show the formation of profile soil evolves by bedrock chemical weathering.The element Ce was separated from the other REEs,and the chondrite-normalized REEs distribution patterns show significant Ce-anomalies and negative Eu-anonalies.TheδCe trend of the two sections is basically the same,indicating that the two sections underwent a similar weathering migration process.
引文
[1]Eswaran H,Berg E V,Reich P.Organic carbon in soils of the world[J].Soil Sci Soc Am J,1993,57(4):192-194.
    [2]潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题:兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报,2002,25(3):100-109.Pan Gen-xing,Li Lian-qing,Zhang Xu-hui.Perspectives on issues of soil carbon pools and global change with suggestions for studying organic carbon sequestration in paddy soils of China[J].J Nanjing Agr Univ,2002,25(3):100-109(in Chinese with English abstract).
    [3]王国安.稳定碳同位素在第四纪古环境研究中的应用[J].第四纪研究,2003,23(5):471-484.Wang Guo-an.Application of stable carbon isotope to research on paleoenvironment[J].Quatern Sci,2003,23(5):471-484(in Chinese with English abstract).
    [4]刘丛强,蒋颖魁,陶发祥,郎赟超,李思亮.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414.Liu Cong-qiang,Jiang Ying-kui,Tao Fa-xiang,Lang Yun-chao,Li Si-liang.Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J].Geochimica,2008,37(4):404-414(in Chinese with English abstract).
    [5]刘涛泽,刘丛强,张伟,涂成龙.喀斯特地区坡地土壤有机碳的分布特征和δ13C值组成差异[J].水土保持学报,2008,22(5):115-124.Liu Tao-ze,Liu Cong-qiang,Zhang Wei,Tu Cheng-long.Spatial distribution characteristics of soil organic carbon and difference in stable carbon isotope composition in slopes of Karst areas[J].J Soil Water Conserv,2008,22(5):115-124(in Chinese with English abstract).
    [6]沈亚婷.EDXRF测定土壤元素含量及其在有机碳垂直分布特征研究中的应用[J].光谱学与光谱分析,2012,32(11):3117-3122.Shen Ya-ting.Determination of major,minor and trace elements in soils by polarized energy X-Ray fluorescence spectrometry and the application to vertical distribution characteristics of soil organic carbon[J].Spectrosc Spect Anal,2012,32(11):3117-3122(in Chinese with English abstract).
    [7]Ford D C,Salomon J N,Williams P W.Les“Forets de Pierres”ou“Stone Forests”de Lunan(Yunnan-China)[J].Karstologia,1996,28(2):25-40.
    [8]李龙波,涂成龙,赵志琦,崔丽峰,刘文景.黄土高原不同植被覆盖下土壤有机碳的分布特征及其同位素组成研究[J].地球与环境,2011,39(4):441-449.Li Long-bo,Tu Cheng-long,Zhao Zhi-qi,Cui Li-feng,Liu Wen-jing.Distribution characteristics of soil organic carbon and its isotopic composition for soil profiles of loess plateau under different vegetation condition[J].Earth Environ,2011,39(4):441-449(in Chinese with English abstract).
    [9]张春华,王宗明,居为民,任春颖.松嫩平原玉米带土壤碳氮比的时空变异特征[J].环境科学,2011,32(5):1407-1414.Zhang Chun-hua,Wang Zong-ming,Ju Wei-min,Ren Chunying.Spetial and temporal variability of soil C/N ratio in Songnen Plain maize belt[J].Environ Sci,2011,32(5):1407-1414(in Chinese with English abstract).
    [10]窦晶鑫,刘景双,王洋,赵光影.三江平原草甸湿地土壤有机碳矿化对C/N的响应[J].地理科学,2009,29(5):773-778.Dou Jing-xin,Liu Jing-shuang,Wang Yang,Zhao Guang-ying.Effects of amendment C/N ration on soil organic carbon mineralization of meadow marshes in Sanjiang Plain[J].Geogr Sci,2009,29(5):773-778(in Chinese with English abstract).
    [11]陈怀满.环境土壤学[M].北京:科学出版社,2010:1-516.Chen Huai-man.Environmental Edaphology[M].Beijing:Science Press,2010:1-516(in Chinese).
    [12]李晓丹,王超.固体进样--土壤中总有机碳的测定[J].黑龙江环境通报,2011,35(4):65-66,70.Li Xiao-dan,Wang Chao.Solid sampling-Determination of organic carbon in soil[J].Heilongjiang Environ J,2011,35(4):65-66,70(in Chinese with English abstract).
    [13]Loveland P,Webb J.Is there a critical level of organic matter in the agricultural soils of temperate regions:A review[J].Soil Tillage Res,2003,70(1):1-18.
    [14]党雪瑞.陆地生态系统CO2通量及其碳稳定同位素的研究[D].杨凌:西北农林科技大学,2012.Dang Xue-rui.Study on CO2 flux and carbon stable isotope of terrestrial ecosystem[D].Yangling:North West Agriculture and Forestry University,2012(in Chinese with English abstract).
    [15]田丽艳,郎赟超,刘丛强,丁虎,赵志琦,刘涛泽.贵州普定喀斯特坡地土壤剖面有机碳及其同位素组成[J].生态学杂志,2013,32(9):2362-2367.Tian Li-yan,Lang Yun-chao,Liu Cong-qiang,Ding Hu,Zhao Zhi-qi,Liu Tao-ze.Distribution patterns of organic carbon and its isotope compositions in soil profiles on the slopes in Puding karst areas of Guizhou Province,Southwest China[J].Chinese J Ecol,2013,32(9):2362-2367(in Chinese with English abstract).
    [16]Buchmann N,Kao W Y,Ehleringer J.Influence of stand structure on carbon-13 of vegetation,soils and canopy air within deciduous and evergreen forests in Utah,United States[J].Oecologia,1997,110:109-119.
    [17]Farquhar G D,Ehleringer J R.Hubick K Y.Carbon isotope discrimination and photosynthesis[J].Ann Revi Plant Physiol Plant Mol Biol,1989,40:503-537.
    [18]Benner R,Fogel M L,Sprague E K,Hodson R E.Depletion of13C in lignin and its implications for stable carbon isotope studies[J].Nature,1987,329(6141):708-710.
    [19]Friedli H,Lotscher H,Oeschger H,Siegenthaler U,Stauffer B.Ice core record of the 13C/12C ratio of atmosphere CO2 in the past two centuries[J].Nature,1986,324(6094):237-238.
    [20]Bird M,Kraht O,Derridn D,Zhou Y.The effet of soil texture and roots on the stable carbon isotope omposition of soil organic carbon[J].Aust J Soil Res,2003,41(1):77-94.
    [21]温强.基于碳氮同位素技术探析北京城市河流有机质的来源[D].北京:首都师范大学,2012.Wen Qiang.Analysis of the organic matter sources in Beijing city river by carbon and nitrogen isotopes technology[D].Beijing:Capital Normal University,2012(in Chinese with English abstract).
    [22]王楠,姚佳佳,高彦征,刘娟.黄棕壤中不同粒径组分的提取分级与表征[J].中国环境科学,2012,32(12):2253-2260.Wang Nan,Yao Jia-jia,Gao Yan-zheng,Liu Juan.Particle size distribution in yellow-brown soil:Fractionation and characterization[J].China Environ Sci,2012,32(12):2253-2260(in Chinese with English abstract).
    [23]薛积彬,钟巍,曹家元,欧阳军.末次冰期以来雷州半岛北部C3/C4植物相对丰度变化及其驱动因素[J].湖泊科学,2014,26(3):464-472.Xue Ji-bin,Zhong Wei,Cao Jia-yuan,Ouyang Jun.Variations and driving forces of the relative abundance of C3/C4 plants in the northern Leizhou Peninsula since the Last Glacial Age[J].J Lake Sci,2014,26(3):464-472(in Chinese with English abstract).
    [24]Nesbitt H W,Young G M.Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885):715-717.
    [25]王立强,王亲.河西走廊及其毗邻地区地表物沉积元素特征[J].西北地质,2013,46(2):69-80.Wang Li-qiang,Wang Qin.Elemental compositions of surface deposits in Hexi corridor and its adjacent areas,Northwestern China[J].Northwest Geol,2013,46(2):69-80(in Chinese with English abstract).
    [26]王自强,尹崇玉,高林志,唐烽,柳永清,刘鹏举.宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J].地质论评,2006,52(5):577-585.Wang Zi-qiang,Yin Chong-yu,Gao Lin-zhi,Tang Feng,Liu Yong-qing,Liu Peng-ju.The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua system in Yichang area[J].Geol Rev,2006,52(5):577-585(in Chinese with English abstract).
    [27]Guggenbergr G,Baumler R,Zech W.Weathering of soils developed in eolian material overlaying glacial deposits in eastern Nepal[J].Soil Sci,1998,163:325-337.
    [28]杨艳芳,李德成,张甘霖,胡锋.雷州半岛玄武岩发育的时间序列土壤的发生演变[J].土壤学报,2010,47(5):817-825.Yang Yan-fang,Li De-cheng,Zhang Gan-lin,Hu Feng.Evolution of chronosequential soils derived from volcanic basalt on tropical Leizhou Peninsula,south China[J].Acta Pedol Sinica,2010,47(5):817-825(in Chinese with English abstract).
    [29]王伟,杨瑞东,栾进华,黄波.贵州西部玄武岩风化壳中稀土矿成矿机理及成矿模式[J].四川地质学报,2011,31(4):420-423.Wang Wei,Yang Rui-dong,Luan Jin-hua,Huang Bo.Genetic mechanism and genetic model for REE ores in basalt weatheriong crust in West Guizhou[J].Acta Geol Sichuan,2011,31(4):420-423(in Chinese with English abstract).
    [30]张莉,季宏兵,高杰,李锐,李今今.贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征[J].地球化学,2015,44(4):323-336.Zhang Li,Ji Hong-bing,Gao Jie,Li Rui,Li Jin-jin.Geochemical characteristics of major,trace and rare earth elements in typical carbonate weathered profiles of Guizhou Plateau[J].Geochimica,2015,44(4):323-336(in Chinese with English abstract).
    [31]李艳丽.贵州碳酸盐岩红色风化壳稀土富集与分异的机理研究[D].贵阳:中国科学院地球化学研究所,2004.Li Yan-li.The mechanism about the enrichment and the fractionation of REE of the end residua in karst terrains of Guizhou Province[D].Guiyang:Institute of Geochemistry,Chinese Academy of Sciences,2004(in Chinese with English abstract).
    [32]Bandfield J F,Eggleton R.Apatite replacement and rare earth mobilization,fractionation,and fixation during weathering[J].Clay Clay Miner,1989,37(2):113-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700