Single-crystal TiO_2/SrTiO_3 core–shell heterostructured nanowire arrays for enhanced photoelectrochemical performance
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Single-crystal TiO_2/SrTiO_3 core–shell heterostructured nanowire arrays for enhanced photoelectrochemical performance
  • 作者:Ying ; Chen ; Shi ; Li ; Ruo-Yu ; Zhao ; Wei ; Li ; Zhao-Hui ; Ren ; Gao-Rong ; Han
  • 英文作者:Ying Chen;Shi Li;Ruo-Yu Zhao;Wei Li;Zhao-Hui Ren;Gao-Rong Han;State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Application, Zhejiang University;
  • 英文关键词:TiO_2/SrTiO_3heterostructured nanowire arrays;;Photoelectrochemical water splitting;;Shell thickness;;Band alignment
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Application, Zhejiang University;
  • 出版日期:2019-05-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 51232006, 51472218 and 11474249);; the National Basic Research Program of China (No. 2015CB654900)
  • 语种:英文;
  • 页:XYJS201905003
  • 页数:10
  • CN:05
  • ISSN:11-2112/TF
  • 分类号:13-22
摘要
Vertically aligned TiO_2/SrTiO_3 core–shell heterostructured nanowire arrays with different shell thicknesses(5–40 nm) were fabricated on fluorine-doped tin oxide substrate via a hydrothermal process.Microstructural characterization demonstrated that the TiO_2 nanowires were uniformly coated by the singlecrystal SrTiO_3 shell, where continuous and large-area interface could be clearly observed. By this means, significantly enhanced photoelectrochemical water splitting properties(0.78 mAácm-2 at 1.23 V vs. RHE) were successfully realized in well-designed sample(with a shell thickness of 5–10 nm) compared with those of pristine TiO2(0.38 mAácm-2 at 1.23 V vs. RHE). The improvement of photoelectrochemical properties was attributed to the improved charge injection and charge separation, which are calculated by the results of water oxidation and sulfite oxidation measurements. Based on these results, a mechanism was proposed that SrTiO_3 shell acted as an electron–hole separation layer to improve the photocurrent density.On the other hand, the sample with an over-thick SrTiO_3 shell(20–40 nm) exhibited slightly reduced photoelectrochemical properties(0.66 mAácm-2), which could be explained by the increase of the recombination rate in thethicker SrTiO_3 shell. This work provided a facile strategy to improve and modulate the photoelectrochemical performance of heterostructured photoanodes.
        Vertically aligned TiO_2/SrTiO_3 core–shell heterostructured nanowire arrays with different shell thicknesses(5–40 nm) were fabricated on fluorine-doped tin oxide substrate via a hydrothermal process.Microstructural characterization demonstrated that the TiO_2 nanowires were uniformly coated by the singlecrystal SrTiO_3 shell, where continuous and large-area interface could be clearly observed. By this means, significantly enhanced photoelectrochemical water splitting properties(0.78 mAácm-2 at 1.23 V vs. RHE) were successfully realized in well-designed sample(with a shell thickness of 5–10 nm) compared with those of pristine TiO2(0.38 mAácm-2 at 1.23 V vs. RHE). The improvement of photoelectrochemical properties was attributed to the improved charge injection and charge separation, which are calculated by the results of water oxidation and sulfite oxidation measurements. Based on these results, a mechanism was proposed that SrTiO_3 shell acted as an electron–hole separation layer to improve the photocurrent density.On the other hand, the sample with an over-thick SrTiO_3 shell(20–40 nm) exhibited slightly reduced photoelectrochemical properties(0.66 mAácm-2), which could be explained by the increase of the recombination rate in thethicker SrTiO_3 shell. This work provided a facile strategy to improve and modulate the photoelectrochemical performance of heterostructured photoanodes.
引文
[1]Chow J,Kopp RJ,Portney PR.Energy resources and global development.Science.2003;302(5650):1528.
    [2]Maeda K,Domen K.Photocatalytic water splitting:recent progress and future challenges.J Phys Chem Lett.2010;1(18):2655.
    [3]Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting.Chem Soc Rev.2009;38(1):253.
    [4]Gratzel M.Photoelectrochemical cells.Nature.2001;414:338.
    [5]Hisatomi T,Kubota J,Domen K.Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.Chem Soc Rev.2014;43(11):7520.
    [6]Chen YZ,Li WH,Li L,Wang LN.Progress in organic photocatalysts.Rare Met.2018;37(1):1.
    [7]Wang G,Wang H,Ling Y,Tang Y,Yang X,Fitzmorris RC,Wang C,Zhang JZ,Li Y.Hydrogen-treated TiO2nanowire arrays for photoelectrochemical water splitting.Nano Lett.2011;11(7):3026.
    [8]Wang W,Dong J,Ye X,Li Y,Ma Y,Qi L.Heterostructured TiO2nanorod@nanobowl arrays for efficient photoelectrochemical water splitting.Small.2016;12(11):1469.
    [9]Wang Y,Zhang YY,Tang J,Wu H,Xu M,Peng Z,Gong XG,Zheng G.Simultaneous etching and doping of TiO2nanowire arrays for enhanced photoelectrochemical performance.ACSNano.2013;7(10):9375.
    [10]Wolcott A,Smith WA,Kuykendall TR,Zhao Y,Zhang JZ.Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting.Adv Funct Mater.2009;19(12):1849.
    [11]Yang X,Wolcott A,Wang G,Sobo A,Fitzmorris RC,Qian F,Zhang JZ,Li Y.Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.Nano Lett.2009;9(6):2331.
    [12]Cristino V,Caramori S,Argazzi R,Meda L,Marra GL,Bignozzi CA.Efficient photoelectrochemical water splitting by anodically grown WO3electrodes.Langmuir.2011;27(11):7276.
    [13]Liu X,Wang F,Wang Q.Nanostructure-based WO3photoanodes for photoelectrochemical water splitting.Phys Chem Chem Phys.2012;14(22):7894.
    [14]Li W,Da P,Zhang Y,Wang Y,Lin X,Gong X,Zheng G.WO3nanoflakes for enhanced photoelectrochemical conversion.ACSNano.2014;8(11):11770.
    [15]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature.1972;238(5358):37.
    [16]Bak T,Nowotny J,Rekas M,Sorrell CC.Photo-electrochemical hydrogen generation from water using solar energy.Materials-related aspects.Int J Hydrog Energy.2002;27(10):991.
    [17]Zhu K,Neale NR,Miedaner A,Frank AJ.Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2nanotubes arrays.Nano Lett.2007;7(1):69.
    [18]Roy P,Berger S,Schmuki P.TiO2nanotubes:synthesis and applications.Angew Chem Int Ed.2011;50(13):2904.
    [19]Li Y,Zhang JZ.Hydrogen generation from photoelectrochemical water splitting based on nanomaterials.Laser Photonics Rev.2010;4(4):517.
    [20]Chen Z,Jaramillo TF,Deutsch TG,Kleiman-Shwarsctein A,Forman AJ,Gaillard N,Garland R,Takanabe K,Heske C,Sunkara M,McFarland EW,Domen K,Miller EL,Turner JA,Dinh HN.Accelerating materials development for photoelectrochemical hydrogen production:standards for methods,definitions,and reporting protocols.J Mater Res.2010;25(1):3.
    [21]Hoang S,Guo S,Mullins CB.Coincorporation of N and Ta into TiO2nanowires for visible light driven photoelectrochemical water oxidation.J Phys Chem C.2012;116(44):23283.
    [22]Xu M,Da P,Wu H,Zhao D,Zheng G.Controlled Sn-doping in TiO2nanowire photoanodes with enhanced photoelectrochemical conversion.Nano Lett.2012;12(3):1503.
    [23]Ning F,Shao M,Xu S,Fu Y,Zhang R,Wei M,Evans DG,Duan X.TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting.Energy Environ Sci.2016;9(8):2633.
    [24]Pu YC,Wang G,Chang KD,Ling Y,Lin YK,Fitzmorris BC,Liu CM,Lu X,Tong Y,Zhang JZ,Hsu YJ,Li Y.Au nanostructure-decorated TiO2nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.Nano Lett.2013;13(8):3817.
    [25]Resasco J,Zhang H,Kornienko N,Becknell N,Lee H,Guo J,Briseno AL,Yang P.TiO2/BiVO4nanowire heterostructure photoanodes based on type II band alignment.ACS Cent Sci.2016;2(2):80.
    [26]Yang W,Yu Y,Starr MB,Yin X,Li Z,Kvit A,Wang S,Zhao P,Wang X.Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3core-shell nanowire photoanodes.Nano Lett.2015;15(11):7574.
    [27]Wetchakun N,Chaiwichain S,Inceesungvorn B,Pingmuang K,Phanichphant S,Minett AI,Chen J.BiVO4/CeO2nanocomposites with high visible-light-induced photocatalytic activity.ACSAppl Mater Interfaces.2012;4(7):3718.
    [28]Sun WT,Yu Y,Pan HY,Gao XF,Chen Q,Peng LM.Cd Squantum dots sensitized TiO2nanotube-array photoelectrodes.J Am Chem Soc.2008;130(4):1124.
    [29]Luo J,Ma L,He T,Ng CF,Wang S,Sun H,Fan HJ.TiO2/(CdS,CdSe,CdSeS)nanorod heterostructures and photoelectrochemical properties.J Phys Chem C.2012;116(22):11956.
    [30]Mohapatra SK,Banerjee S,Misra M.Synthesis of Fe2O3/TiO2nanorod-nanotube arrays by filling TiO2nanotubes with Fe.Nanotechnology.2008;19(31):315601.
    [31]Barreca D,Carraro G,Gasparotto A,Maccato C,Warwick MEA,Kaunisto K,Sada C,Turner S,Go¨nu¨llu¨Y,Ruoko TP,Borgese L,Bontempi E,Tendeloo GV,Lemmetyinen H,Mathur S.Fe2O3-TiO2nano-heterostructure photoanodes for highly efficient solar water oxidation.Adv Mater Interfaces.2015;2(17):1500313.
    [32]Luan SL,Qu D,An L,Jiang WS,Gao X,Hua SX,Miao X,Wen YJ,Sun ZC.Enhancing photocatalytic performance by constructing ultrafine TiO2nanorods/g-C3N4nanosheets heterojunction for water treatment.Sci Bull.2018;63(11):683.
    [33]Konta R,Ishii T,Kato H,Kudo A.Photocatalytic activities of noble metal ion doped SrTiO3under visible light irradiation.J Phys Chem B.2004;108(26):8992.
    [34]Xie TH,Sun X,Lin J.Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)-O-Fe(II)formed in Fe-doped SrTiO3.J Phys Chem C.2008;112(26):9753.
    [35]Chen HC,Huang CW,Wu JCS,Lin ST.Theoretical Investigation of the metal-doped SrTiO3photocatalysts for water splitting.J Phys Chem C.2012;116(14):7897.
    [36]Liu JW,Chen G,Li ZH,Zhang ZG.Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3.J Solid State Chem.2006;179(12):3704.
    [37]Liu Y,Xie L,Li Y,Yang R,Qu J,Li Y,Li X.Synthesis and high photocatalytic hydrogen production of SrTiO3nanoparticles from water splitting under UV irradiation.J Power Sources.2008;183(2):701.
    [38]Wang M,Zheng D,Ye M,Zhang C,Xu B,Lin C,Sun L,Lin Z.One-dimensional densely aligned perovskite-decorated semiconductor heterojunctions with enhanced photocatalytic activity.Small.2015;11(12):1436.
    [39]Zhang J,Bang JH,Tang C,Kamat PV.Tailored TiO2-SrTiO3heterostructure nanotube arrays for improved photoelectrochemical performance.ACS Nano.2010;4(1):387.
    [40]Kim TW,Choi KS.Nanoporous BiVO4photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.Science.2014;343(6174):990.
    [41]Neville RC,Hoeneise B,Mead CA.Permittivity of strontium titanate.J Appl Phys.1972;43(5):2124.
    [42]Tobar ME,Krupka J,Ivanov EN,Woode RA.Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K.J Appl Phys.1998;83(3):1604.
    [43]Burnside S,Moser JE,Brooks K,Gratzel M,Cahen D.Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices:increasing photovoltage through flatband potential engineering.J Phys Chem B.1999;103(43):9328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700