金属有机骨架衍生的碳化铁/碳制备及其电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and electrochemical properties of Fe_3C/C derived from metal-organic framework
  • 作者:陈修栋 ; 柏任流 ; 文志刚
  • 英文作者:Chen Xiudong;Bai Renliu;Wen Zhigang;School of Chemistry and Chemical Engineering,Qiannan Normal College for Nationalities;
  • 关键词:氮掺杂的Fe_3C/C立方体 ; 负极材料 ; 金属有机骨架 ; 水热法
  • 英文关键词:nitrogen-doped Fe_3C/C cube;;anode material;;metallic organic framework;;hydrothermal method
  • 中文刊名:WJYG
  • 英文刊名:Inorganic Chemicals Industry
  • 机构:黔南民族师范学院化学化工学院;
  • 出版日期:2019-01-10
  • 出版单位:无机盐工业
  • 年:2019
  • 期:v.51;No.362
  • 基金:贵州省教育厅青年科技人才成长项目(黔科合KY字[2018]430号);; 贵州省2016年黔南民族师范学院院级项目;; 中央财政支持地方高校发展专项资金《黔南天然资源开发科技创新团队建设重点项目》
  • 语种:中文;
  • 页:WJYG201901007
  • 页数:4
  • CN:01
  • ISSN:12-1069/TQ
  • 分类号:35-38
摘要
采用水热法成功地合成了前驱体,并在氮气条件下煅烧得到氮掺杂的碳化铁/碳立方体。通过XRD、BET、 SEM、TEM对目标产物进行了表征,研究了氮掺杂的碳化铁/碳立方体的微观结构、表面形貌。氮掺杂的碳化铁/碳立方体作为锂离子负极材料的电化学测试表明,在200 m A/g的电流密度下首次可逆容量达到889 m A·h/g,循环200次后,容量保持率为88.1%。同时,电流密度从0.1 A/g增加到5 A/g,容量具有一定的衰减,但恢复到0.1 A/g时,容量几乎维持到原来的水平,表明其具有良好的倍率性能。所以,制备的氮掺杂的碳化铁/碳多孔立方体具有较高的比容量、良好的循环性能和广泛的应用前景。
        The precursors were successfully synthesized by hydrothermal method.Then the precursors were calcined under nitrogen to obtain nitrogen-doped Fe_3 C/C cubes.The target product was characterized by XRD,BET,SEM and TEM.The microstructure and surface morphology of nitrogen-doped Fe_3 C/C cubes were studied.The electrochemical tests of the nitrogen-doped Fe_3 C/C cube as the anodes for lithium-ion batteries showed that the reversible capacity of the first cycle reached 889 mA·h/g,and the capacity retention rate was 88.1% at a current density of 200 m A/g after 200 cycles.Meanwhile,when the current density increased from 0.1 A/g to 5 A/g, the capacity had certain attenuation. But restored to 0.1 A/g and almost maintained at its original level,indicating that it had good rate performance.Therefore,the porous N-Fe_3 C/C prepared had high specific capacity,good cycling performance and a wide range of application.
引文
[1] Jokar A,Rajabloo B,Désilets M,et al.Review of simplified pseudotwo-dimensional models of lithium-ion batteries[J].Journal Power Sources,2016,327:44-55.
    [2] Zhao Y,Wang L P,Sougrati M T,et al.A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J].Advanced Energy Materials,2017,7(9):1601424.
    [3] Talapaneni S N,Hwang T H,Je S H,et al.Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries[J].Angew.Chem.Int.Ed.,2016,55:3106-3111.
    [4] Khan N A,Haque E,Jhung S H.Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3under microwave:a quantitative analysis of accelerated syntheses[J].Physical Chemistry Chemical Physics,2010,12:2625-2631.
    [5] Huo J,Brightwell M,Hankari S E,et al.A versatile,industrially relevant,aqueous room temperature synthesis of HKUST-1 with high space-time yield[J].Journal of Materials Chemistry A,2013,48:15220-15223.
    [6] Vishnyakov A,Ravikovitch P I,Neimark A V,et al.Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J].Nano Letters,2003,3(6):713-718.
    [7] Shao J,Wan Z M,Liu H M,et al.Metal organic frameworks-derived Co3O4hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage[J].Journal of Materials Chemistry A,2014,2:12194-12200.
    [8] Yang S,Feng X,Zhi L,et al.Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage[J].Advanced Materials,2010,22(7):838-842.
    [9] Chang K,Chen W.L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J].ACS Nano,2011,5(6):4720-4728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700