Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes
  • 作者:Tingting ; Cui ; Jinhu ; Dong ; Xiulian ; Pan ; Tie ; Yu ; Qiang ; Fu ; Xinhe ; Bao
  • 英文作者:Tingting Cui;Jinhu Dong;Xiulian Pan;Tie Yu;Qiang Fu;Xinhe Bao;State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Single-walled carbon nanotubes;;Confined catalysis;;Molybdenum carbide;;Nanoparticles;;Hydrogen evolution reaction
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.28
  • 基金:financially supported by the National Natural Science Foundation of China (No. 21425312, 21688102, 21621063, and 21573224)
  • 语种:英文;
  • 页:TRQZ201901017
  • 页数:5
  • CN:01
  • ISSN:10-1287/O6
  • 分类号:131-135
摘要
Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.
        Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.
引文
[1]J.A.Turner,Science 305(2004)972-974.
    [2]M.S.Dresselhaus,I.L.Thomas,Nature 414(2001)332-337.
    [3]X.X.Zou,Y.Zhang,Chem.Soc.Rev.44(2015)5148-5180.
    [4]C.Cheng,S.S.A.Shah,T.Najam,L.Zhang,X.Qi,Z.Wei,J.Energy.Chem.26(2017)1245-1251.
    [5]B.Luo,T.Huang,Y.Zhu,D.Wang,J.Energy Chem.26(2017)1147-1152.
    [6]X.Sun,J.Huo,Y.Yang,L.Xu,S.Wang,J.Energy Chem.26(2017)1136-1139.
    [7]Z.Zhou,N.Mahmood,Y.Zhang,L.Pan,L.Wang,X.Zhang,J.-J.Zou,J.Energy Chem.26(2017)1223-1230.
    [8]C.Tang,M.-M.Titirici,Q.Zhang,J.Energy Chem.26(2017)1077-1093.
    [9]J.Greeley,T.F.Jaramillo,J.Bonde,I.B.Chorkendorff,J.K.Norskov,Nat.Mater.5(2006)909-913.
    [10]H.B.Gray,Nat.Chem.1(2009)7-7.
    [11]H.H.Hwu,J.G.G.Chen,Chem.Rev.105(2005)185-212.
    [12]Y.Liu,T.G.Kelly,J.G.G.Chen,W.E.Mustain,ACS Catal.3(2013)1184-1194.
    [13]S.Li,C.Yang,Z.Yin,H.Yang,Y.Chen,L.Lin,M.Li,W.Li,G.Hu,D.Ma,Nano Res.10(2017)1322-1328.
    [14]M.A.Lukowski,A.S.Daniel,F.Meng,A.Forticaux,L.S.Li,S.Jin,J.Am.Chem.Soc.135(2013)10274-10277.
    [15]W.F.Chen,J.T.Muckerman,E.Fujita,Chem.Commun.49(2013)8896-8909.
    [16]Z.C.Xing,Q.Liu,A.M.Asiri,X.P.Sun,Adv.Mater.26(2014)5702-5707.
    [17]L.Lin,W.Zhou,R.Gao,S.Yao,X.Zhang,W.Xu,S.Zheng,Z.Jiang,Q.Yu,Y.-W.Li,C.Shi,X.-D.Wen,D.Ma,Nature 544(2017)80-83.
    [18]H.Vrubel,X.L.Hu,Angew.Chem.Int.Ed.51(2012)12703-12706.
    [19]H.B.Wu,B.Y.Xia,L.Yu,X.Y.Yu,X.W.Lou,Nat.Commun.6(2015)6512.
    [20]Y.P.Liu,G.T.Yu,G.D.Li,Y.H.Sun,T.Asefa,W.Chen,X.X.Zou,Angew.Chem.Int.Ed.54(2015)10752-10757.
    [21]F.X.Ma,H.B.Wu,B.Y.Xia,C.Y.Xu,X.W.Lou,Angew.Chem.Int.Ed.54(2015)15395-15399.
    [22]H.L.Lin,Z.P.Shi,S.N.He,X.Yu,S.N.Wang,Q.S.Gao,Y.Tang,Chem.Sci.7(2016)3399-3405.
    [23]W.Chen,X.Pan,X.Bao,J.Am.Chem.Soc.129(2007)7421-7426.
    [24]F.Zhang,F.Jiao,X.L.Pan,K.Gao,J.P.Xiao,S.Zhang,X.H.Bao,ACS Catal.5(2015)1381-1385.
    [25]T.Cui,X.Pan,J.Dong,S.Miao,D.Miao,X.Bao,Nano Res.(2018).https://doi.org/10.1007/s12274-018-1975-2.
    [26]J.S.Lee,L.Volpe,F.H.Ribeiro,M.Boudart,J.Catal.112(1988)44-53.
    [27]K.S.W.Sing,D.H.Everett,R.A.W.Haul,L.Moscou,R.A.Pierotti,J.Rouquerol,T.Siemieniewska,Pure Appl.Chem.57(1985)603-619.
    [28]X.Yang,X.Feng,H.Tan,H.Zang,X.Wang,Y.Wang,E.Wang,Y.Li,J.Mater.Chem.A 4(2016)3947-3954.
    [29]H.Lin,Z.Shi,S.He,X.Yu,S.Wang,Q.Gao,Y.Tang,Chem.Sci.7(2016)3399-3405.
    [30]W.Chen,Z.Fan,B.Zhang,G.Ma,K.Takanabe,X.Zhang,Z.Lai,J.Am.Chem.Soc.133(2011)14896-14899.
    [31]F.-X.Ma,H.B.Wu,B.Y.Xia,C.-Y.Xu,X.W.Lou,Angew.Chem.Int.Ed.54(2015)15395-15399.
    [32]C.G.Morales-Guio,L.-A.Stern,X.Hu,Chem.Soc.Rev.43(2014)6555-6569.
    [33]B.B?rresen,G.Hagen,R.Tunold,Electrochim.Acta 47(2002)1819-1827.
    [34]B.E.Conway,B.V.Tilak,Electrochim.Acta 47(2002)3571-3594.
    [35]C.Wan,Y.N.Regmi,B.M.Leonard,Angew.Chem.Int.Ed.53(2014)6407-6410.
    [36]B.Sljukic,M.Vujkovic,L.Amaral,D.M.F.Santos,R.P.Rocha,C.A.C.Sequeira,J.L.Figueiredo,J.Mater.Chem.A 3(2015)15505-15512.
    [37]K.Xiong,L.Li,L.Zhang,W.Ding,L.Peng,Y.Wang,S.Chen,S.Tan,Z.Wei,J.Mater.Chem.A 3(2015)1863-1867.
    [38]L.Liao,S.Wang,J.Xiao,X.Bian,Y.Zhang,M.D.Scanlon,X.Hu,Y.Tang,B.Liu,H.H.Girault,Energy Environ.Sci.7(2014)387-392.
    [39]W.F.Chen,C.H.Wang,K.Sasaki,N.Marinkovic,W.Xu,J.T.Muckerman,Y.Zhu,R.R.Adzic,Energy Environ.Sci.6(2013)943-951.
    [40]Y.Zhao,K.Kamiya,K.Hashimoto,S.Nakanishi,J.Am.Chem.Soc.137(2015)110-113.
    [41]R.Ma,Y.Zhou,Y.Chen,P.Li,Q.Liu,J.Wang,Angew.Chem.Int.Ed.54(2015)14723-14727.
    [42]J.Guo,J.Wang,Z.Wu,W.Lei,J.Zhu,K.Xia,D.Wang,J.Mater.Chem.A 5(2017)4879-4885.
    [43]W.-F.Chen,J.T.Muckerman,E.Fujita,Chem.Commun.49(2013)8896-8909.
    [44]M.S.Faber,S.Jin,Energy Environ.Sci.7(2014)3519-3542.
    [45]D.H.Youn,S.Han,J.Y.Kim,J.Y.Kim,H.Park,S.H.Choi,J.S.Lee,ACS Nano 8(2014)5164-5173.
    [46]J.K.Norskov,T.Bligaard,A.Logadottir,J.R.Kitchin,J.G.Chen,S.Pandelov,J.K.Norskov,J.Electrochem.Soc.152(2005)J23-J26.
    [47]R.Michalsky,Y.J.Zhang,A.A.Peterson,ACS Catal.4(2014)1274-1278.
    [48]J.Deng,P.Ren,D.Deng,L.Yu,F.Yang,X.Bao,Energy Environ.Sci.7(2014)1919-1923.
    [49]H.Zhang,Z.Ma,G.Liu,L.Shi,J.Tang,H.Pang,K.Wu,T.Takei,J.Zhang,Y.Yamauchi,J.Ye,NPG Asia Mater 8(2016)e293.
    [50]J.P.Xiao,X.L.Pan,S.J.Guo,P.J.Ren,X.H.Bao,J.Am.Chem.Soc 137(2015)477-482.
    [51]L.Ma,L.R.L.Ting,V.Molinari,C.Giordano,B.S.Yeo,J.Mater.Chem.A 3(2015)8361-8368.
    [52]J.Chen,M.A.Hamon,H.Hu,Y.S.Chen,A.M.Rao,P.C.Eklund,R.C.Haddon,Science 282(1998)95-98.
    [53]D.Tasis,N.Tagmatarchis,A.Bianco,M.Prato,Chem.Rev.106(2006)1105-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700