Metal–Oleate Complex?Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metal–Oleate Complex?Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance
  • 作者:Yingying ; Cao ; Kaiming ; Geng ; Hongbo ; Geng ; Huixiang ; Ang ; Jie ; Pei ; Yayuan ; Liu ; Xueqin ; Cao ; Junwei ; Zheng ; Hongwei ; Gu
  • 英文作者:Yingying Cao;Kaiming Geng;Hongbo Geng;Huixiang Ang;Jie Pei;Yayuan Liu;Xueqin Cao;Junwei Zheng;Hongwei Gu;Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University;School of Chemical Engineering and Light Industry, Guangdong University of Technology;School of Chemical and Biomedical Engineering, Nanyang Technological University;College of Physics, Optoelectronic and Energy, Soochow University;
  • 英文关键词:Metal–oleate complex;;Bimetallic oxides nanoparticles;;Porous architecture;;3D graphene networks;;Lithium ion batteries
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University;School of Chemical Engineering and Light Industry, Guangdong University of Technology;School of Chemical and Biomedical Engineering, Nanyang Technological University;College of Physics, Optoelectronic and Energy, Soochow University;
  • 出版日期:2019-03-15
  • 出版单位:Nano-Micro Letters
  • 年:2019
  • 期:v.11
  • 基金:financial support from National Natural Science Foundation of China (No. 21373006 and No. 51801030);; the Science and Technology Program of Suzhou (SYG201732);; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);; the project of Scientific and Technologic Infrastructure of Suzhou (SZS201708);; the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB430029);; One-hundred Young Talents (Class A) of Guangdong University of Technology (No. 220413198);; Natural Science Foundation of Guangdong Providence (No. 2018A030310571)
  • 语种:英文;
  • 页:NANO201901015
  • 页数:14
  • CN:01
  • ISSN:31-2103/TB
  • 分类号:250-263
摘要
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4  GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4  GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li~+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4  GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li~+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4  GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
        In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4  GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4  GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li~+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4  GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li~+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4  GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
引文
1.K.Kang,Y.S.Meng,J.Bréger,C.P.Grey,G.Ceder,Electrodes with high power and high capacity for rechargeable lithium batteries.Science 311(5763),977-980(2006).https://doi.org/10.1126/scien ce.11221 52
    2.J.Wang,N.Yang,H.Tang,Z.Dong,Q.Jin et al.,Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries.Angew.Chem.Int.Ed.52(25),6417-6420(2013).https://doi.org/10.1002/anie.20130 1622
    3.B.Li,N.Jiang,W.Huang,H.Yan,Y.Zuo,D.Xia,Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries.Adv.Funct.Mater.28(4),1704864(2018).https://doi.org/10.1002/adfm.20170 4864
    4.L.Zhou,D.Zhao,X.Lou,LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries.Angew.Chem.Int.Ed.51,239-241(2012).https://doi.org/10.1002/anie.20110 6998
    5.Z.Liu,L.Feng,X.Su,C.Qin,K.Zhao,F.Hu,M.Zhou,Y.Xia,Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries.J.Power Sources 375,102-105(2018).https://doi.org/10.1016/j.jpows our.2017.11.064
    6.X.Zhou,L.J.Wan,Y.G.Guo,Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.Adv.Mater.25(15),2152-2157(2013).https://doi.org/10.1002/adma.20130 0071
    7.H.Liu,W.Zhao,R.Li,X.Huang,Y.Tang,D.Li,F.Huang,Facile synthesis of reduced graphene oxide in situ wrapped MnTiO3 nanoparticles for excellent lithium storage.J.Inorg.Mater.33(9),1022-1028(2018).https://doi.org/10.15541/jim20 18014 3
    8.Z.Luo,J.C.Xu,B.Yuan,H.Li,R.Z.Hu,L.C.Yang,Y.Gao,M.Zhu,A novel 3D bimodal porous current collector with large interconnected spherical channels for improved capacity and cycling stability of Sn anode in Li-ion batteries.Mater.Lett.213,189-192(2018).https://doi.org/10.1016/j.matle t.2017.11.089
    9.H.Shang,Z.Zuo,L.Li,F.Wang,H.Liu,Y.Li,Y.Li,Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes.Angew.Chem.Int.Ed.57(3),774-778(2018).https://doi.org/10.1002/anie.20171 1366
    10.L.Qie,W.M.Chen,Z.H.Wang,Q.G.Shao,X.Li et al.,Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability.Adv.Mater.24(15),2047-2050(2012).https://doi.org/10.1002/adma.20110 4634
    11.P.Poizot,S.Laruelle,S.Grugeon,L.Dupont,J.M.Tarascon,Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature 407,496-499(2000).https://doi.org/10.1038/35035 045
    12.Y.Jiang,Z.-J.Jiang,L.Yang,S.Cheng,M.Liu,A high-performance anode for lithium ion batteries:Fe3O4 microspheres encapsulated in hollow graphene shells.J.Mater.Chem.A3(22),11847-11856(2015).https://doi.org/10.1039/c5ta0 1848j
    13.D.Xu,C.Mu,J.Xiang,F.Wen,C.Su,C.Hao,W.Hu,Y.Tang,Z.Liu,Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage,supercapacitor and oxygen evolution reaction.Electrochim.Acta 220,322-330(2016).https://doi.org/10.1016/j.elect acta.2016.10.116
    14.L.Wang,Y.Fu,Y.Chen,Y.Li,R.Zhou,S.Chen,Y.Song,Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries.J.Alloys Compd.724,1117-1123(2017).https://doi.org/10.1016/j.jallc om.2017.07.130
    15.J.Mujtaba,H.Sun,Y.Zhao,G.Xiang,S.Xu,J.Zhu,Highperformance lithium storage based on the synergy of atomicthickness nanosheets of TiO2(B)and ultrafine Co3O4 nanoparticles.J.Power Sources 363,110-116(2017).https://doi.org/10.1016/j.jpows our.2017.07.076
    16.L.Wang,Y.Zheng,X.Wang,S.Chen,F.Xu et al.,Nitrogendoped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.ACS Appl.Mater.Interfaces6(10),7117-7125(2014).https://doi.org/10.1021/am406 053s
    17.H.Sun,Y.Liu,Y.Yu,M.Ahmad,D.Nan,J.Zhu,Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries.Electrochim.Acta 118,1-9(2014).https://doi.org/10.1016/j.elect acta.2013.11.181
    18.Z.Cui,S.Wang,Y.Zhang,M.Cao,High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure.Electrochim.Acta 182,507-515(2015).https://doi.org/10.1016/j.elect acta.2015.09.120
    19.G.Y.Huang,S.M.Xu,Y.Yang,Y.B.Cheng,J.Li,Preparation of cobalt-based Bi-metal-oxides and the application in the field of electrochemical energy storage.Chin.J.Inorg.Chem.32(10),1693-1703(2016).https://doi.org/10.11862/CJIC.2016.244
    20.F.Zheng,G.Xia,Y.Yang,Q.Chen,MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.Nanoscale7(21),9637-9645(2015).https://doi.org/10.1039/c5nr0 0528k
    21.P.Rosaiah,J.Zhu,O.M.Hussain,Y.Qiu,Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries.Ceram.Int.44(3),3077-3084(2018).https://doi.org/10.1016/j.ceram int.2017.11.070
    22.Y.Deng,L.Wan,Y.Xie,X.Qin,G.Chen,Recent advances in Mn-based oxides as anode materials for lithium ion batteries.RSC Adv.4(45),23914-23935(2014).https://doi.org/10.1039/c4ra0 2686a
    23.H.Jiang,Y.Hu,S.Guo,C.Yan,P.S.Lee,C.Li,Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries.ACS Nano 8(6),6038-6046(2014).https://doi.org/10.1021/nn501 310n
    24.X.Liu,C.Chen,Y.Zhao,B.Jia,A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries.J.Nanomater.2013,1-7(2013).https://doi.org/10.1155/2013/73637 5
    25.J.Zhou,S.Cheng,Y.Jiang,F.Zheng,X.Ou et al.,Fabrication of TiO2 coated porous CoMn2O4 submicrospheres for advanced lithium-ion anodes.RSC Adv.7(34),21214-21220(2017).https://doi.org/10.1039/c7ra0 2789c
    26.Y.Zhang,X.Wang,Q.Zhao,Y.Fu,H.Wang,H.Shu,Facile preparation and performance of hierarchical self-assembly MnCo2O4 nanoflakes as anode active material for lithium ion batteries.Electrochim.Acta 180,866-872(2015).https://doi.org/10.1016/j.elect acta.2015.09.037
    27.J.Bai,X.Li,G.Liu,Y.Qian,S.Xiong,Unusual formation of Zn Co2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material.Adv.Funct.Mater.24(20),3012-3020(2014).https://doi.org/10.1002/adfm.20130 3442
    28.L.Yao,X.Hou,S.Hu,J.Wang,M.Li et al.,Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries.J.Power Sources 258,305-313(2014).https://doi.org/10.1016/j.jpows our.2014.02.055
    29.M.Khan,M.N.Tahir,S.F.Adil,H.U.Khan,M.R.H.Siddiqui,A.A.Al-warthan,W.Tremel,Graphene based metal and metal oxide nanocomposites:synthesis,properties and their applications.J.Mater.Chem.A 3(37),18753-18808(2015).https://doi.org/10.1039/c5ta0 2240a
    30.S.Park,R.S.Ruo,Chemical methods for the production of graphenes.Nat.Nanotechnol.4(4),217-224(2009).https://doi.org/10.1038/nnano.2009.58
    31.G.Gao,S.Lu,Y.Xiang,B.Dong,W.Yan,S.Ding,Freestanding ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.Dalton Trans.44(43),18737-18742(2015).https://doi.org/10.1039/c5dt0 3696h
    32.X.Yang,K.Fan,Y.Zhu,J.Shen,X.Jiang,P.Zhao,S.Luan,C.Li,Electric papers of graphene-coated Co3O4 fibers for high-performance lithium-ion batteries.ACS Appl.Mater.Interfaces 5(3),997-1002(2013).https://doi.org/10.1021/am302 685t
    33.H.Wang,L.-F.Cui,Y.Yang,H.Sanchez Casalongue,J.T.Robinson,Y.Liang,Y.Cui,H.Dai,Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.J.Am.Chem.Soc.132(40),13978-13980(2010).https://doi.org/10.1021/ja105 296a
    34.P.Jie,G.Hongbo,A.Huixiang,Z.Lingling,W.Huaixin,C.Xueqin,Z.Junwei,G.Hongwei,Three-dimensional nitrogen and sulfur Co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries.Nanotechnology 29(29),295404(2018).https://doi.org/10.1088/1361-6528/aac02 c
    35.C.Chen,J.Xi,E.Zhou,L.Peng,Z.Chen,C.Gao,Porous graphene microflowers for high-performance microwave absorption.Nano-Micro Lett.10(2),26(2018).https://doi.org/10.1007/s4082 0-017-0179-8
    36.D.Gu,Y.Zhou,R.Ma,F.Wang,Q.Liu,J.Wang,Facile synthesis of N-doped graphene-like carbon nanoflakes as e cient and stable electrocatalysts for the oxygen reduction reaction.Nano-Micro Lett.10(2),29(2018).https://doi.org/10.1007/s4082 0-017-0181-1
    37.L.Zhou,D.Zhao,X.W.Lou,Double-shelled CoMn2O4hollow microcubes as high-capacity anodes for lithium-ion batteries.Adv.Mater.24(6),745-748(2012).https://doi.org/10.1002/adma.20110 4407
    38.A.Jha,D.Mhamane,A.Suryawanshi,S.M.Joshi,P.Shaikh,N.Biradar,S.Ogale,C.V.Rode,Triple nanocomposites of CoMn2O4,Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols.Catal.Sci.Technol.4(6),1771-1778(2014).https://doi.org/10.1039/c3cy0 1025b
    39.G.Yang,X.Xu,W.Yan,H.Yang,S.Ding,Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries.Electrochim.Acta 137,462-469(2014).https://doi.org/10.1016/j.elect acta.2014.05.167
    40.Y.Xu,X.Wang,C.An,Y.Wang,L.Jiao,H.Yuan,Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors.J.Mater.Chem.A 2(39),16480-16488(2014).https://doi.org/10.1039/c4ta0 3123g
    41.G.Qu,H.Geng,D.Ge,J.Zheng,H.Gu,Graphene-coated mesoporous Co3O4 fibers as an e cient anode material for Li-ion batteries.RSC Adv.6(75),71006-71011(2016).https://doi.org/10.1039/c6ra1 5404b
    42.Y.Li,X.Hou,Y.Li,Q.Ru,S.Wang,S.Hu,K.-H.Lam,Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries.Electron.Mater.Lett.13(5),427-433(2017).https://doi.org/10.1007/s1339 1-017-6258-7
    43.M.Bijeli?,X.Liu,Q.Sun,A.B.Djuri?i?,M.H.Xie et al.,Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity.J.Mater.Chem.A 3(28),14759-14767(2015).https://doi.org/10.1039/c5ta0 3570h
    44.M.H.Kim,Y.J.Hong,Y.C.Kang,Electrochemical properties of yolk-shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries.RSC Adv.3(32),13110-13114(2013).https://doi.org/10.1039/c3ra4 1314d
    45.J.Li,S.Xiong,X.Li,Y.Qian,A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties.Nanoscale5(5),2045-2054(2013).https://doi.org/10.1039/c2nr3 3576j
    46.Y.Sharma,N.Sharma,G.V.S.Rao,B.V.R.Chowdari,Listorage and cyclability of urea combustion derived ZnFe2O4as anode for Li-ion batteries.Electrochim.Acta 53(5),2380-2385(2008).https://doi.org/10.1016/j.elect acta.2007.09.059
    47.G.Li,L.Xu,Y.Zhai,Y.Hou,Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs.J.Mater.Chem.A 3(27),14298-14306(2015).https://doi.org/10.1039/c5ta0 3145a
    48.D.Ge,J.Wu,G.Qu,Y.Deng,H.Geng,J.Zheng,Y.Pan,H.Gu,Rapid and large-scale synthesis of bare Co3O4 porous nanostructures from an oleate precursor as superior Li-ion anodes with long-cycle lives.Dalton Trans.45(34),13509-13513(2016).https://doi.org/10.1039/c6dt0 2136k
    49.D.Cai,B.Qu,Q.Li,H.Zhan,T.Wang,Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advance anode materials for lithium and sodium storage.J.Alloys Compd.716,30-36(2017).https://doi.org/10.1016/j.jallc om.2017.05.023
    50.C.Yang,Y.Zhang,F.Lv,C.Lin,Y.Liu et al.,Porous Zr Nb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage.J.Mater.Chem.A 5(42),22297-22304(2017).https://doi.org/10.1039/C7TA0 7347J
    51.B.H.Hou,Y.Y.Wang,J.Z.Guo,Q.L.Ning,X.T.Xi et al.,Pseudocapacitance-boosted ultrafast Na storage in a pielike FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries.Nanoscale 10(19),9218-9225(2018).https://doi.org/10.1039/c7nr0 9674g
    52.X.Deng,Z.Wei,C.Cui,Q.Liu,C.Wang,J.Ma,Oxygendeficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage.J.Mater.Chem.A 6(9),4013-4022(2018).https://doi.org/10.1039/C7TA11301C
    53.L.Zhang,G.He,S.Lei,G.Qi,H.Jiu,J.Wang,Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery.J.Power Sources 326,505-513(2016).https://doi.org/10.1016/j.jpows our.2016.07.021
    54.L.Wang,B.Liu,S.Ran,L.Wang,L.Gao,F.Qu,D.Chen,G.Shen,Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries.J.Mater.Chem.A 1(6),2139-2143(2013).https://doi.org/10.1039/c2ta0 0125j
    55.S.L.Zhang,B.Y.Guan,H.B.Wu,X.W.D.Lou,Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties.NanoMicro Lett.10(3),44(2018).https://doi.org/10.1007/s40820-018-0197-1
    56.Y.Pan,W.Zeng,L.Li,Y.Zhang,Y.Dong,A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries.Nano-Micro Lett.9(2),20(2017).https://doi.org/10.1007/s4082 0-016-0122-4
    57.L.Yao,J.Wu,H.Deng,Q.-A.Huang,Q.Su,G.Du,MnCo2O4/graphene composites anchored on Ni foam as binder-free anode with enhanced lithium-storage performance.Mater.Lett.180,188-191(2016).https://doi.org/10.1016/j.matle t.2016.05.177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700