用户名: 密码: 验证码:
In Situ Coupling Strategy for Anchoring Monodisperse Co_9S_8 Nanoparticles on S and N Dual?Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In Situ Coupling Strategy for Anchoring Monodisperse Co_9S_8 Nanoparticles on S and N Dual?Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery
  • 作者:Qi ; Shao ; Jiaqi ; Liu ; Qiong ; Wu ; Qiang ; Li ; Heng?guo ; Wang ; Yanhui ; Li ; Qian ; Duan
  • 英文作者:Qi Shao;Jiaqi Liu;Qiong Wu;Qiang Li;Heng?guo Wang;Yanhui Li;Qian Duan;School of Materials Science and Engineering, Changchun University of Science and Technology;
  • 英文关键词:In situ coupling strategy;;Porphyrin derivate;;Doped graphene;;Metal sulfide;;Bifunctional electrocatalyst;;Rechargeable Zn–air battery
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:School of Materials Science and Engineering, Changchun University of Science and Technology;
  • 出版日期:2019-03-15
  • 出版单位:Nano-Micro Letters
  • 年:2019
  • 期:v.11
  • 基金:supported by the National Natural Science Foundation of China (Grant No. 21404014);; the Science & Technology Department of Jilin Province (No. 20170101177JC)
  • 语种:英文;
  • 页:NANO201901004
  • 页数:14
  • CN:01
  • ISSN:31-2103/TB
  • 分类号:64-77
摘要
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec~(-1) for ORR and 69.2 mV dec~(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.
        An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec~(-1) for ORR and 69.2 mV dec~(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.
引文
1.Y.G. Li, H.J. Dai, Recent advances in zinc?air batteries. Chem.Soc. Rev. 43(15), 5257–5275(2014). https://doi.org/10.1039/C4CS0 0015C
    2 .Y.G. Li, M. Gong, Y.Y. Liang, J. Feng, J.E. Kim, H.L. Wang,G.S. Hong, B. Zhang, H.J. Dai, Advanced zinc?air batter?ies based on high?performance hybrid electrocatalysts. Nat.Commun. 4(5), 1805–1812(2013). https://doi.org/10.1038/ncomm s2812
    3 .J.Fu,Z.P.Cano,M.G.Park,A.P.Yu,M.Fowler,Z.W.Chen, Electrically rechargeable zinc?air batteries:progress,challenges, and perspectives. Adv. Mater. 29(7), 1604685(2017). https://doi.org/10.1002/adma.20160 4685
    4 .T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He et al., 2D dual?metal zeolitic?imidazolate?framework?(ZIF)?derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc?air batteries. Adv. Funct.Mater.28(5),1705048(2017).https://doi.org/10.1002/adfm.20170 5048
    5 .F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang,In situ coupling of strungCo4N and intertwined N–C fib?ers towards free?standing bifunctional cathode for robust,e cient, and flexible Zn–air batteries. J. Am. Chem. Soc.138 (32),10226–10231(2016).https://doi.org/10.1021/jacs.6b050 46
    6 .D.U.Lee,J.Y.Choi,K.Feng,H.W.Park,Z.W.Chen,Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc?air batteries. Adv. Energy Mater. 4(6),1301389(2014). https://doi.org/10.1002/aenm.20130 1389
    7 .H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al.,Identification of catalytic sites for oxygen reduction and oxy?gen evolution in N?doped graphene materials:development of highly e cient metal?free bifunctional electrocatalyst.Sci. Adv. 2(4), 1501122(2016). https://doi.org/10.1126/sciad v.15011 22
    8 .X.P. Han, X.Y. Wu, Y.D. Deng, J. Liu, J. Lu, C. Zhong, W.B.Hu,UltrafinePtnanoparticle?decoratedpyrite?typeCoS2nanosheet arrays coated on carbon cloth as a bifunctional elec?trode for overall water splitting. Adv. Energy Mater. 8(24),1800935(2018). https://doi.org/10.1002/aenm.20180 0935
    9 .Z. Chen, A.P. Yu, D. Higgins, H. Li, H.J. Wang, Z.W. Chen,Highly active and durable core?corona structured bifunctional catalyst for rechargeable metal?air battery application. Nano Lett. 12(4), 1946–1952(2012). https://doi.org/10.1021/nl2044327
    10 .X.P. Han, X.Y. Wu, C. Zhong, Y.D. Deng, N.Q. Zhao, W.B.Hu,NiCo2S4 nanocrystals anchored on nitrogen?doped carbonnanotubes as a highly e cient bifunctional electrocatalyst for rechargeable zinc?air batteries. Nano Energy 31, 541–550(2017). https://doi.org/10.1016/j.nanoe n.2016.12.008
    11 .J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominatedNiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater.29 (47), 1704681(2017). https://doi.org/10.1002/adma.201704681
    12 .Y.P. Tang, F. Jing, Z.X. Xu, F. Zhang, Y.Y. Mai, D.Q. Wu,Highly crumpled hybrids of nitrogen/sulfur dual?doped gra?phene andCo9S8 nanoplates as e cient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 9(14), 12340–12347(2017). https://doi.org/10.1021/acsam i.6b154 61
    13 .H.X. Zhong, K. Li, Q. Zhang, J. Wang, F.L. Meng, Z.J. Wu,J.M. Yan, X.B. Zhang, In situ anchoring ofCo9S8 nanoparti?cles on N and S co?doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 8(9), e308(2016).https://doi.org/10.1038/am.2016.132
    14 .S.S. Li, P.P. Cheng, J.X. Luo, D. Zhou, W.M. Xu, J.W. Li,R.C. Li, D.S. Yuan, High?performance flexible asymmetric supercapacitorbasedonCoAl?LDHandrGOelectrodes.Nano?Micro Lett. 9(3), 31(2017). https://doi.org/10.1007/s4082 0?017?0134?8
    15 .X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang et al.,Batteries:homogeneous CoO on graphene for binder?free and ultralong?life lithium ion batteries. Adv. Funct. Mater. 23(35),4345–4353(2013). https://doi.org/10.1002/adfm.20120 3777
    16 .Z.L. Wang, X.F. Hao, Z. Jiang, X.P. Sun, D. Xu, J. Wang, H.X.Zhong, F.L. Meng, X.B. Zhang, C and N hybrid coordination derived Co–C–N complex as a highly e cient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137(48),15070–15073(2015). https://doi.org/10.1021/jacs.5b090 21
    17 .Q. Wang, P.P. Zhang, Q.Q. Zhuo, X.X. Lv, J.W. Wang, X.H.Sun, Direct synthesis of co?doped graphene on dielectric sub?strates using solid carbon sources. Nano?Micro Lett. 7(4),368 –373(2015). https://doi.org/10.1007/s4082 0?015?0052?6
    18 .H.G.Wang,Y.H.Wang,Y.H.Li,Y.C.Wan,Q.Duan,Exceptional electrochemical performance of nitrogen?doped porouscarbonforlithiumstorage.Carbon82,116–123(2015). https://doi.org/10.1016/j.carbo n.2014.10.041
    19 .J. Guo, X.M. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its gra?phene?based axial complex for enhanced oxygen reduction.Nano Energy 46, 347–355(2018). https://doi.org/10.1016/j.nanoe n.2018.02.026
    20 .H.G. Wang, C. Jiang, C.P. Yuan, Q. Wu, Q. Li, Q. Duan,Complexingagentengineeredstrategyforanchoring SnO2 nanoparticles on sulfur/nitrogen co?doped graphene for superior lithium and sodium ion storage. Chem. Eng.J.332(15),237–244(2018).https://doi.org/10.1016/j.cej.2017.09.081
    21 .D. Singh, I.I. Soykal, J. Tian, D.V. Deak, J. King, J.T. Miller,U.S. Ozkan, In situ characterization of the growth of CNx carbon nano?structures as oxygen reduction reaction catalysts.J. Catal. 304(11), 100–111(2013). https://doi.org/10.1016/j.jcat.2013.04.008
    22.R.G. Cao, R. Thapa, H. Kim, X.D. Xu, M.G. Kim, Q. Li, N.Park, M.L. Liu, J. Cho, Promotion of oxygen reduction by a bio?inspired tethered iron phthalocyanine carbon nanotube?based catalyst. Nat. Commun. 4(3), 2076–2083(2013). https://doi.org/10.1038/ncomm s3076
    23 .K. Ariga, Y. Lvov, T. Kunitake, Assembling alternate dye?polyion molecular films by electrostatic layer?by?layer adsorp?tion. J. Am. Chem. Soc. 119(9), 2224–2231(1997). https://doi.org/10.1021/ja963 442c
    24 .W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, Fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157(2008). https://doi.org/10.1016/j.dyepi g.2007.04.007
    25 .H. Xu, P. Wu, C. Liao, C.G. Lv, Z.Z. Gu, Controlling the morphology and optoelectronic properties of graphene hybrid materials by porphyrin interactions. Chem. Commun. 50(64),8951–8954(2014). https://doi.org/10.1039/C4CC0 3458A
    26 .Z.H. Xiang, Y.H. Xue, D.P. Cao, L. Huang, J.F. Chen, L.M.Dai, Highly e cient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non?precious metals. Angew. Chem. Int. Ed. 53(9), 2433–2437(2014). https://doi.org/10.1002/anie.20130 8896
    27 .J. Li, Y.J. Song, G.X. Zhang, H.Y. Liu, Y.R. Wang, S.H. Sun,X.W. Guo, Pyrolysis of self?assembled porphyrin on carbon black as core/shell structured electrocatalysts for highly e?cient oxygen reduction in both alkaline and acidic medium.Adv.Funct.Mater.27(3),1604356(2017).https://doi.org/10.1002/adfm.20160 4356
    28 .J.Y.Long,Y.Gong,J.H.Lin,Metal?organicframework?derivedCo9S8@CoS@CoO@Cnanoparticlesasefficient electro?and photo?catalysts for the oxygen evolution reaction.J. Mater. Chem. A 5(21), 10495–10509(2017). https://doi.org/10.1039/C7TA0 1447C
    29 .Q.L. Zhang, Y.W. Zhang, Z.H. Gao, H.L. Ma, S.J. Wang, J.Peng, J.Q. Li, M.L. Zhai, A facile synthesis of platinum nano?particle decorated graphene by one?stepγ?ray induced reduc?tion for high rate supercapacitors. J. Mater. Chem. C 1(2),21 –328(2012). https://doi.org/10.1039/C2TC0 0078D
    30 .C.C.Hu,J.Liu,J.Wang,W.X.She,J.W.Xiao,J.B.Xi,Z.W. Bai, S. Wang, Coordination?assisted polymerization of mesoporous cobalt sulfide/heteroatom(N, S)?doped double?layered carbon tubes as an e cient bifunctional oxygen elec?trocatalyst. ACS Appl. Mater. Interfaces 10(39), 33124–33134(2018). https://doi.org/10.1021/acsam i.8b073 43
    31 .H. Wu, J. Geng, H.T. Ge, Z.Y. Guo, Y.G. Wang, G.F. Zheng,Egg?derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv.Energy Mater. 6(20), 1600794(2016). https://doi.org/10.1002/aenm.20160 0794
    32 .T. Huang, Y. Chen, J.M. Lee, Two?dimensional cobalt/N?doped carbon hybrid structure derived from metal?organic frameworks as e cient electrocatalysts for hydrogen evolu?tion. ACS Sustain. Chem. Eng. 5(7), 5646–5650(2017). https://doi.org/10.1021/acssu schem eng.7b005 98
    33 .I. Kone, A. Xie, Y. Tang, Y. Chen, J. Liu, Y.M. Chen, Y.Z.Sun, X.J. Yang, P.Y. Wan, Hierarchical porous carbon dopedwith iron–nitrogen–sulfur for e cient oxygen reduction reac?tion. ACS Appl. Mater. Interfaces 9(24), 20963–20973(2017).https://doi.org/10.1021/acsam i.7b023 06
    34 .M. Du, K. Rui, Y.Q. Chang, Y. Zhang, Z.Y. Ma, W.P. Sun, Q.Y.Yan, J.X. Zhu, W. Huang, Carbon necklace incorporated elec?troactive reservoir constructing flexible papers for advanced lithium?ion batteries. Small 14(2), 1702770–1702778(2018).https://doi.org/10.1002/smll.20170 2770
    35 .D.X. Ji, S.J. Peng, L. Fan, L.L. Li, X.H. Qin, S. Ramakrishna,ThinMoS2 nanosheets grafted MOFs derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self?supported bifunctional catalysts for overall water splitting.J. Mater. Chem. A 5(45), 23898–23908(2017). https://doi.org/10.1039/C7TA0 8166A
    36 .P.Y. Zeng, J.W. Li, M. Ye, K.F. Zhuo, Z. Fang, In situ for?mation ofCo9S8/N?C hollow nanospheres by pyrolysis and sulfurization of ZIF?67 for high?performance lithium?ion bat?teries. Chem. Eur. J. 23(40), 9517–9524(2017). https://doi.org/10.1002/chem.20170 0881
    37 .Q.Q. Yang, L. Liu, L. Xiao, L. Zhang, M.J. Wang, J. Li, Z.D.Wei,Co9S8@N,S?codopedcarboncore–shellstructured nanowires:constructing a flu y surface for high?density active sites. J. Mater. Chem. A 6, 14752–14760(2018). https://doi.org/10.1039/C8TA0 3604G
    38 .X.P. Han, G.W. He, Y. He, J.F. Zhang, X.R. Zheng et al.,Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10),1702222(2017). https://doi.org/10.1002/aenm.20170 2222
    39 .S.F. Fu, C.Z. Zhu, J.H. Song, S. Feng, D. Du, M.H. Engelhard,D.D. Xiao, D.S. Li, Y.H. Lin, Two?dimensional N, S?codopedcarbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(42),36755–36761(2017). https://doi.org/10.1021/acsam i.7b102 27
    40 .H.J. Shen, E. Graciaespino, J.Y. Ma, K.T. Zang, J. Luo et al.,Synergistic e ect between the atomically dispersed active site of Fe–N–C and C–S–C for ORR in acidic medium. Angew.Chem. Int. Ed. 129(44), 13800–13804(2017). https://doi.org/10.1002/anie.20170 6602
    41 .J.Schneider,B.Dischler,A.R?uber,Electronspinreso?nance of sulfur and selenium radicals in alkali halides. Phys.Stat.Sol.13(1),141–157(1966).https://doi.org/10.1002/pssb.19660 13011 3
    42 .Y.H. Hou, T.Z. Huang, Z.H. Wen, S. Mao, S.M. Cui, J.H.Chen, Metal?organic framework?derived nitrogen?doped core–shell?structuredporousFe/Fe3C@Cnanoboxessupported on graphene sheets for e cient oxygen reduction reactions.Adv.Funct.Mater.4(11),1220–1225(2014).https://doi.org/10.1002/aenm.20140 0337
    43 .K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen?doped carbon nanotube arrays with high electrocatalytic activ?ity for oxygen reduction. Science 323(5915), 760–764(2009).https://doi.org/10.1126/scien ce.11680 49
    44 .X.P. Han, X.P. Li, J. White, C. Zhong, Y.D. Deng, W.B. Hu,T.Y. Ma, Metal?air batteries:from static to flow system. Adv.Energy Mater. 8(27), 1801396(2018). https://doi.org/10.1002/aenm.20180 1396
    45 .J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114(1), 111–119(2010). https://doi.org/10.1021/jp908 548f

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700