Effect of copper on magnetostriction and mechanical properties of TbDyFe alloys
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of copper on magnetostriction and mechanical properties of TbDyFe alloys
  • 作者:Naijuan ; Wang ; Yuan ; Liu ; Huawei ; Zhang ; Xiang ; Chen ; Yanxiang ; Li
  • 英文作者:Naijuan Wang;Yuan Liu;Huawei Zhang;Xiang Chen;Yanxiang Li;School of Materials Science and Engineering, Tsinghua University;Key Laboratory for Advanced Materials Processing Technology,Ministry of Education;
  • 英文关键词:TbDyFeCu alloy;;Microstructure;;Magnetostriction;;Mechanical performance;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:School of Materials Science and Engineering, Tsinghua University;Key Laboratory for Advanced Materials Processing Technology,Ministry of Education;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 语种:英文;
  • 页:YXTB201901009
  • 页数:6
  • CN:01
  • ISSN:11-2788/TF
  • 分类号:74-79
摘要
The intrinsic brittleness of the TbDyFe alloy significantly decreases its mach inability and applications.This paper aims to improve the toughness of TbDyFe alloy by adding Cu. Various alloys of the type(Tb_(0.3)Dy_(0.7))_(0.37)Fe_(0.63-χ)Cu_χ(χ=0, 0,01.0.03, 0.05, 0.08, 0.1) were fabricated by an arc melting furnace under a high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance were studied systematically. The results show that the (Tb,Dy)Cu phase forms in these alloys upon the addition of Cu. Correspondingly, their toughness improves, attributed to the formation of a (Tb,Dy)Cu phase. Compared to the Cu-free alloy, the fracture toughness (Kic) increases 2-3 times with increasing Cu content. However, the magnetostriction performance of these alloys declines with Cu addition, due to the low-magnetic performance of the (Tb,Dy)Cu phase at room temperature. Compared with other alloys, the alloy with the addition of 1at%Cu shows the best compromise between the saturation magnetostriction and fracture toughness.
        The intrinsic brittleness of the TbDyFe alloy significantly decreases its mach inability and applications.This paper aims to improve the toughness of TbDyFe alloy by adding Cu. Various alloys of the type(Tb_(0.3)Dy_(0.7))_(0.37)Fe_(0.63-χ)Cu_χ(χ=0, 0.01, 0.03, 0.05, 0.08, 0.1) were fabricated by an arc melting furnace under a high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance were studied systematically. The results show that the(Tb,Dy)Cu phase forms in these alloys upon the addition of Cu. Correspondingly, their toughness improves, attributed to the formation of a(Tb,Dy)Cu phase. Compared to the Cu-free alloy, the fracture toughness(K_(IC)) increases 2-3 times with increasing Cu content. However, the magnetostriction performance of these alloys declines with Cu addition, due to the low-magnetic performance of the(Tb,Dy)Cu phase at room temperature. Compared with other alloys, the alloy with the addition of lat% Cu shows the best compromise between the saturation magnetostriction and fracture toughness.
引文
1. Chelvane JA, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Effects of Ti addition on the micro structure and magnetic properties of magneto strictive Tb-Dy-Fe alloys. Scripta Mater. 2009;61:548.
    2. Shi YG, Tang SL, Yu JY, Zhai L, Zhang XK, Du YW, et al. Synthesis and magnetostriction of Tb_xPr_(1-x)(Fe_(0.8)Co_(0.2))_(1.9)cubic Laves alloys. J Appl Phys. 2009; 105:07A925.
    3. Pan ZB, Liu JJ, Wang R, Liu XY, Wang J, Sun NK, et al. Structure and magnetostriction of Tb_(0.4)Nd_(0.6)(Fe_(0.8)Co_(0.2))_x alloys. Appl Phys A. 2014;115:1121.
    4. Liu JJ, Pan ZB, Liu XY, Zhang ZR, Song XH, Ren WJ. Large magnetostriction and direct experimental evidence for anisotropy compensation in Tb_(0.4-x)Nd_xDy_(0.6)(Fe_(0.8)Co_(0.2))_(1.93)Laves compounds. Mater Lett. 2014;137:274.
    5. Wang K, Liu T, Gao PF, Wang Q, Liu Y, He JC. Magnetostriction increase of Tb_(0.3)Dy_(0.7)Fe_(1.95)alloy prepared by solidification in high magnetic fields. Chin Phys Lett. 2015;2:037502.
    6. Olabi AG, Grunwald A. Design and application of magneto strictive materials.Mater Des. 2008;29:469.
    7. Grunwald A, Olabi AG. Design of a magnetostrictive(MS)actuator. Sensor Actuat A-Phys. 2008; 144:161.
    8. Zhang TL, Jiang CB, Xu HB, Mao JQ. Permanent-magnet longitudinal fields for magnetostrictive devices. J Appl Phys. 2007;101:034511.
    9. Zhang TL, Jiang CB, Liu XL, Xu HB. Dynamic magneto strain properties of giant magnetostrictive alloy actuators for damping. Smart Mater Struct. 2005;14:N38.
    10. Zhang H, Zhang TL, Jiang CB. Magnetostrictive actuators with large displacement and fast response. Smart Mater Struct. 2012;21:055014.
    11. Zhang H, Zhang TL, Jiang CB. Design of a uniform bias magnetic field for giant magnetostrictive actuators applying triple-ring magnets. Smart Mater Struct.2013;22:115009.
    12. Yu CF, Wang CL, Deng HS, He T, Zhong CM. Characteristics of magnetic domain deflection of Tb_(0.3)Dy_(0.7)Fe_2 alloy. J Rare Earths. 2016;34:882.
    13. Wu W, Zhang MC, Gao XX, Zhou SZ. Effect of two-steps heat treatment on the mechanical properties and magnetostriction of <110> oriented TbDyFe giant magnetostrictive material. J Alloys Compd. 2006;416:256.
    14. Jiang CB, Zhang HB, Wang ZB, Xu HB. Magnetostriction and hysteresis of <110>oriented Tb_(0.29)Dy_(0.48)Ho_(0.23)Fe_2 single crystal. J Phys D Appl Phys. 2008;41:155012.
    15. Liu JJ, Ying HY, Liu XC, Si PZ. Anisotropy compensation and high low-field magnetostriction of epoxy/Tb_(1-x)Ho_x(Fe_(0.8)Co_(0.2))_2 composites(0.60≤χ≤1.0).J Alloys Compd. 2011;509:8207.
    16. Xu LH, Jiang CB, Zhou CG, Xu HB. Magnetostriction and corrosion resistance of Tb_(0.3)Dy_(0.7)(Fe_(1-x)Si_x)_(1.95)alloys. J Alloys Compd. 2008;455:203.
    17. Funayama T, Kobayashi T, Sakai I, Sahashi M. Mn substitution effect on magnetostriction temperature dependence in Tb_(0.3)Dy_(0.7)Fe_2. Appl Phys Lett.1992;61:114.
    18. Gao YH, Zhu JH, Li CT. Magnetic properties and magnetostriction in Tb_(0.5)Dy_(0.5)(Fe_(0.9)Mn_xAl_(0.1-x))_(1.95)compounds. J Magn Magn Mater. 1996; 152:379.
    19. Du J, Wang JH, Tang CC, Li YX, Wu GH, Zhan WS. Magnetostriction in twin-free single crystals Tb_yDy_(1-y)Fe_2 with the addition of aluminum or manganese. Appl Phys Lett. 1998;72:489.
    20. Kobayashi T, Sasaki I, Funayama T, Sahashi M. Magnetic properties and magnetostriction in grain-oriented(Tb_xDy_(1-x))(Fe_(1-y)Mn_y)_(1.95)compounds.J Appl Phys. 1994;76:7024.
    21. Li XC, Ding YT, Hu Y. Effects of Zr addition on the micro structure and magnetostriction of the as cast Tb_(0.3)Dy_(0.7)Fe_(1.95)alloys. J Funct Mater. 2011;42:2257.
    22. Li XC, Ding YT, Hu Y. Microstructure and magnetostriction of Tb_(0.3)Dy_(0.7)-Fe_(1.95-x)Nb_x(x=0, 0.03, 0.06, 0.09)alloys. Rare Metal Mater Eng. 2012;41:2045.
    23. Westwood P, Abell JS, Pitman KC. Phase relationships in the Tb-Dy-Fe ternary system. J Appl Phys. 1990;67:4998.
    24. Yin HY, Liu JJ, Pan ZB, Liu XY, Liu XC, Liu LD, et al. Magnetostriction of Tb_xDy_(0.9-x)Nd_(0.1)(Fe_(0.8)Co_(0.2))_(1.93)compounds and their composites(0.20≤x≤0.60). J Alloys Compd. 2014;582:583.
    25. Chen M, Liu Y, Li YX, Chen X. Microstructure and mechanical properties of AlTiFeNiCuCr_x high-entropy alloy with multi-principal elements. Acta Metall Sin. 2007;43:1020.
    26. Zhuang YX, Xue HD, Chen ZY, Hu ZY, He JC. Effect of annealing treatment on micro structures and mechanical properties of FeCoNiCuAl high entropy alloys.Mater Sci Eng A. 2013;572:30.
    27. Kang DZ, Liu JH, Jiang CB, Xu HB. Control of solid-liquid interface morphology and radial composition distribution:TbDyFe single crystal growth. J Alloys Compd. 2015;621:331.
    28. Wang BW, Cao SY, Huang WM. Magnetostrictive materials and devices. Beijing:Metallurgical Industry Press; 2008:11.
    29. de Sousa VSR, Plaza EJR, von Ranke PJ. The influence of spontaneous and field induced spin reorientation transitions on the magnetocaloric properties in rare earth intermetallic compounds:application to TbZn. J Appl Phys. 2010; 107:103928.
    30. Cullen JR, Teter JP, Fogle MW, Restorff JB. Multiple easy-axis changes in magnetostrictive Tb_(0.88)Dy_(0.12)Zn. IEEE Trans Magn. 1999;35:3820.
    31. Lankford J. Indentation microfracture in the Palmqvist crack regime:implications for fracture toughness evaluation by the indentation method. J Mater Sci Lett. 1982; 1:493.
    32. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA. Deformation mechanisms in nacre.J Mater Res. 2001;16:2485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700