Box-Behnken效应面法优化隐丹参酮纳米粒制备工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Preparation Process of Cryptotanshinone Nanoparticles by Box-Behnken Response Surface Methodology
  • 作者:刘源 ; 袁婉雯 ; 王金岗 ; 王岩
  • 英文作者:Liu Yuan;Yuan Wanwen;Wang Jin'gang;Wang Yan;School of Traditional Chinese Medicine, Guangdong Pharmaceutical University;
  • 关键词:隐丹参酮 ; 纳米粒 ; 纳米沉淀法 ; Box-Behnken效应面法 ; 包封率
  • 英文关键词:cryptotanshinone;;PEG-PLGA nanoparticles;;nanoprecipitation method;;Box-Behnken response surface method
  • 中文刊名:GDHG
  • 英文刊名:Guangdong Chemical Industry
  • 机构:广东药科大学中药学院;
  • 出版日期:2019-02-15
  • 出版单位:广东化工
  • 年:2019
  • 期:v.46;No.389
  • 基金:广东省科技计划项目(编号:2015A020211034)?
  • 语种:中文;
  • 页:GDHG201903012
  • 页数:3
  • CN:03
  • ISSN:44-1238/TQ
  • 分类号:36-38
摘要
目的:制备隐丹参酮聚乙二醇-聚乳酸/羟基乙酸共聚物(PEG-PLGA)载药纳米粒,并优化其处方和制备工艺。方法:采用纳米沉淀法制备隐丹参酮PEG-PLGA载药纳米粒。分别以PEG-PLGA在有机相中质量浓度、隐丹参酮和PEG-PLGA质量比、水相和有机相体积比为考察因素,以包封率为考察指标,采用Box-Behnken效应面法优化纳米粒的处方和工艺。结果:隐丹参酮PEG-PLGA纳米粒的最佳处方工艺条件为:PEG-PLGA在有机相中质量浓度为13.78mg·mL-1,隐丹参酮和PEG-PLGA的质量比0.9∶10,水相和有机相的体积比为9.66∶1,平均包封率为70.40%。结论:Box-Behnken效应面法简便可行,可用于优化隐丹参酮载药纳米粒的制备工艺。
        Objective: To prepare cryptotanshinone PEG-PLGA nanoparticles and to optimize the prescription and preparation of cryptotanshinone PEG-PLGA nanoparticles. Methods: The nanoprecipitation method was employed to prepare cryptotanshinone PEG-PLGA nanoparticles. The influence factors included the concentration of PEG-PLGA in organic phase, the mass ratio of PEG-PLGA to drug and the volume ratio of water phase to organic phase. The drug loading process was optimized by Box-Behnken response surface method with the entrapment efficiency as the evaluation parameters. Results: The optimal formulation and process parameters were as follows: the concentration of PEG-PLGA in organic phase was13.78 mg·mL-1, the mass ratio of cryptotanshinone to PEG-PLGA was 0.9∶10,and the volume ratio of water phase to organic phase was 9.66∶1. The average encapsulation efficiency was70.40 %. Conclusion: The Box-Behnken response surface method is simple and feasible and can be used for drug loading process optimization of cryptotanshinone PEG-PLGA nanoparticles.
引文
[7]Garinot M,Virginie Fiévez,Pourcelle V,et al.PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination[J].Journal of Controlled Release,2007,120(3):195-204.
    [8]陈刚,李玉民,刘涛,等.PEG-PLGA纳米颗粒载体药物靶向治疗肿瘤的研究进展[J].国际外科学杂志,2010,37(6):417-419.
    [9]李艳,罗成,周婕.纳米沉淀法及其在纳米载体领域的研究进展[J].中国生物医学工程学报,2017,36(4):483-489.
    [10]李莎,曾迎春,张志荣.醋酸地塞米松PEG-PLGA纳米粒的制备及表征[J].华西药学杂志,2017,32(2):124-126.
    [11]王婴,李木生,吴瑞婵,等.星点设计-效应面法优化青藤碱聚乳酸-羟基乙酸纳米粒的制备工艺[J].中药新药与临床药理,2017(2):232-237.
    [12]柳阳,朱艳华,孙佳琳,等.聚乙二醇-聚乳酸-羟基乙酸嵌段共聚物载药纳米粒制备方法的研究进展[J].中国药房,2017,28(16):2274-2276.
    [13]邵红霞,奉建芳,龙晓英.脂质体包封率的测定方法[J].中南药学,2009,7(3):212-215,6.
    [1]曾金,张志荣,缪萍,等.隐丹参酮的药理作用研究进展[J].中成药,2015,37(6):1309-1313.
    [2]叶因涛,王晨,宋晓坤,等.隐丹参酮对肝癌H22荷瘤小鼠放射增敏作用的影响[J].中国癌症杂志,2014,24(1):29-34.
    [3]邓凤春,杨钰,赵红晔,等.隐丹参酮抑制人胃癌SGC-7901细胞增殖的实验研究[J].中外医疗,2014,35(5):49-50.
    [4]叶欢,阮君山,王少明.隐丹参酮抑制A549细胞复发转移的机制[J].海峡药学,2014,26(12):238-241.
    [5]王加茹,徐宛婷,朴仙姬,等.隐丹参酮诱导人食管癌HCE-4细胞凋亡的机制[J].肿瘤防治研究,2018,45(8):533-539.
    [6]Zhang J.A Mechanistic Study of the Intestinal Absorption of Cryptotanshinone,the Major Active Constituent of Salvia miltiorrhiza[J].Journal of Pharmacology and Experimental Therapeutics,2006,317(3):1285-1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700