A Survey on Terahertz Communications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Survey on Terahertz Communications
  • 作者:Zhi ; Chen ; Xinying ; Ma ; Bo ; Zhang ; Yaxin ; Zhang ; Zhongqian ; Niu ; Ningyuan ; Kuang ; Wenjie ; Chen ; Lingxiang ; Li ; Shaoqian ; Li
  • 英文作者:Zhi Chen;Xinying Ma;Bo Zhang;Yaxin Zhang;Zhongqian Niu;Ningyuan Kuang;Wenjie Chen;Lingxiang Li;Shaoqian Li;National Key Laboratory of Science and Technology on Communications,University of Electronic Science and Technology of China;
  • 英文关键词:Terahertz (THz) communications;;beyond fifth generation(5G);;superheterodyne receiver;;modulators;;antennas;;channel model;;beamforming;;technical challenges
  • 中文刊名:ZGTO
  • 英文刊名:China Communications
  • 机构:National Key Laboratory of Science and Technology on Communications,University of Electronic Science and Technology of China;
  • 出版日期:2019-02-15
  • 出版单位:中国通信
  • 年:2019
  • 期:v.16
  • 基金:supported by the National High Technology Research and Development Program of China (863 program) of China under Grant No.2011AA010200;; supported by the National Natural Science Foundation of China (NSFC) under Grant No.61771116 and No.91738102
  • 语种:英文;
  • 页:ZGTO201902003
  • 页数:35
  • CN:02
  • ISSN:11-5439/TN
  • 分类号:11-45
摘要
With the exponential growth of the data traffic in wireless communication systems, terahertz(THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation(5G), bridging the gap between millimeter wave(mmWave) and optical frequency ranges. The purpose of this paper is to provide a comprehensive literature review on the development towards THz communications and presents some key technologies faced in THz wireless communication systems. Firstly, despite the substantial hardware problems that have to be developed in terms of the THz solid state superheterodyne receiver, high speed THz modulators and THz antennas, the practical THz channel model and the efficient THz beamforming are also described to compensate for the severe path attenuation. Moreover, two different kinds of lab-level THz communication systems are introduced minutely, named a solid state THz communication system and a spatial direct modulation THz communication system, respectively. The solid state THz system converts intermediate frequency(IF) modulated signal to THz frequency while the direct modulation THz system allows the high power THz sources to input for approving the relatively long distance communications. Finally, we discuss several potential application scenarios as well as some vital technical challenges that will be encountered in the future THz communications.
        With the exponential growth of the data traffic in wireless communication systems, terahertz(THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation(5G), bridging the gap between millimeter wave(mmWave) and optical frequency ranges. The purpose of this paper is to provide a comprehensive literature review on the development towards THz communications and presents some key technologies faced in THz wireless communication systems. Firstly, despite the substantial hardware problems that have to be developed in terms of the THz solid state superheterodyne receiver, high speed THz modulators and THz antennas, the practical THz channel model and the efficient THz beamforming are also described to compensate for the severe path attenuation. Moreover, two different kinds of lab-level THz communication systems are introduced minutely, named a solid state THz communication system and a spatial direct modulation THz communication system, respectively. The solid state THz system converts intermediate frequency(IF) modulated signal to THz frequency while the direct modulation THz system allows the high power THz sources to input for approving the relatively long distance communications. Finally, we discuss several potential application scenarios as well as some vital technical challenges that will be encountered in the future THz communications.
引文
[1]S.Cherry,“Edholm’s law of bandwidth,”IEEESpectrum,vol.41,no.7,2004,pp.58-60.
    [2]H.Song and T.Nagatsuma,“Present and future of terahertz communications,”IEEE Transactions on Terahertz Science and Technology,vol.1,no.1,2011,pp.256-263.
    [3]J.Huang,C.Wang,R.Feng,J.Sun,W.Zhang and Y.Yang,“Multi-Frequency mmWave Massive MIMO Channel Measurements and Characterization for 5G Wireless Communication Systems,”IEEE Journal on Selected Areas in Communications,vol.35,no.7,2017,pp.1591-1605.
    [4]J.Bae and Y.S.Choi,“System capacity enhancement of MmWave based 5G mobile communication system,”Proc.International Conference on Information and Communication Technology Convergence(ICTC),2015,pp.291-294.
    [5]J.H.Zhang,P.Tang,L.Tian,Z.X.Hu,T.Wang,H.M.Wang,“6-100 GHz Research Progress and Challenges for Fifth Generation(5G)and Future Wireless Communication from Channel Perspective”,Science China Information Sciences,vol.60,no.8,2017,pp.1-16.
    [6]T.S.Rappaport,J.N.Murdock,and F.Gutierrez,“State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications,”Proceedings of the IEEE,vol.99,no.8,2011,pp.1390-1436.
    [7]S.K.Agrawal and K.Sharma,“5G millimeter wave(mmWave)com-munications,”Proc.International Conference on Computing for Sustainable Global,2016.
    [8]S.Mumtaz,J.Miquel Jornet,J.Aulin,W.H.Gerstacker,X.Dong and B.Ai,“Terahertz Communication for Vehicular Networks,”IEEE Transactions on Vehicular Technology,vol.66,no.7,2017,pp.5617-5625.
    [9]V.W.S.Chan,“Free-space optical communications,”Journal of Light-wave Technology,vol.24,no.12,2006,pp.4750-4762.
    [10]H.Kaushal and G.Kaddoum,“Optical Communication in Space:Challenges and Mitigation Techniques,”IEEE Communications Surveys and Tutorials,vol.19,no.1,2017,pp.57-96.
    [11]V.W.S.Chan,“Optical satellite networks:Optical networks,”Journal of Lightwave Technology,vol.21,no.11,2003,pp.2811-2827.
    [12]D.J.T.Heatley,D.R.Wisely,I.Neild,and P.Cochrane,“Optical wireless:The story so far,”IEEE Communications Magazine,vol.36,no.12,1998,pp.72-74.
    [13]F.R.Gfeller and U.H.Bapst,“Wireless in-house data communication via diffuse infrared radiation,”Proceedings of the IEEE,vol.67,no.11,1979,pp.1474-1486.
    [14]A.M.Street,P.N.Stavrinou,D.C.O’Brien,and D.J.Edward,“Indoor optical wireless systems-Areview,”Optical and Quantum Electronics,vol.29,no.3,1997,pp.349-378.
    [15]J.B.Carruthers and J.M.Kahn,“Angle diversity for nondirected wire-less infrared communication,”IEEE Transactions on Communications,vol.48,no.6,2000,pp.960-969.
    [16]R.Ramirez-Iniguez and R.J.Green,“Indoor optical wireless communications,”Optical Wireless Communications,vol.128,1999,pp.141-147.
    [17]A.P.Tang,J.M.Kahn,and K.-P.Ho,“Wireless infrared communication links using multi-beam transmitters and imaging receivers,”IEEE International Conference on Communications,vol.1,1996,pp.180-186.
    [18]M.Wolf and D.Kress,“Short-Range Wireless Infrared Transmission:The Link budget compared to RF,”IEEE Wireless Communication,vol.10,no.10,2003,pp.8-14.
    [19]I.F.Akyildiz,J.M.Jornet,and C.Han,“Terahertz band:Next frontier for wireless communications,”Physical Communication(Elsevier),vol.12,no.4,2014,pp.16-32.
    [20]L.A.Samoska,“An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime,”IEEE Transactions on Terahertz Science and Technology,vol.1,no.1,2011,pp.9-24.
    [21]W.Deal,X.B.Mei,K.M.K.H.Leong,V.Radisic,S.Sarkozy and R.Lai,“THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors,”IEEE Transactions on Terahertz Science and Technology,vol.1,no.1,2011,pp.25-32.
    [22]W.R.Deal,et al.,“A 670 GHz Low Noise Amplifier with<10 dB Packaged Noise Figure,”IEEEMicrowave and Wireless Components Letters,vol.26,no.10,2016,pp.837-839.
    [23]W.R.Deal,et al.,“A Low-Power 670-GHz InPHEMT Receiver,”IEEE Transactions on Terahertz Science and Technology,vol.6,no.6,2016,pp.862-864.
    [24]A.Zamora,et al.,“A Submillimeter Wave InPHEMT Multiplier Chain,”IEEE Microwave and Wireless Components Letters,vol.25,no.9,2015,pp.591-593.
    [25]X.Mei,et al.,“First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process,”IEEE Electron Device Letters,vol.36,no.4,2015,pp.327-329.
    [26]K.M.K.H.Leong,et al.,“A 0.85 THz Low Noise Amplifier Using InP HEMT Transistors,”IEEE Microwave and Wireless Components Letters,vol.25,no.6,2015,pp.397-399.
    [27]S.Sarkozy,et al.,“Demonstration of a G-Band Transceiver for Future Space Crosslinks,”IEEETransactions on Terahertz Science and Technology,vol.3,no.5,2013,pp.675-681.
    [28]V.Radisic,et al.,“220-GHz Solid-State Power Amplifier Modules,”IEEE Journal of Solid-State Circuits,vol.47,no.10,2012,pp.2291-2297.
    [29]A.Tessmann,et al.,“Metamorphic HEMT MMICs and Modules Operating Between 300 and 500GHz,”IEEE Journal of Solid-State Circuits,vol.46,no.10,2011,pp.2193-2202.
    [30]I.Mehdi,J.V.Siles,C.Lee and E.Schlecht,“THz Diode Technology:Status,Prospects,and Applications,”Proceedings of the IEEE,vol.105,no.6,2017,pp.990-1007.
    [31]B.Thomas,et al.,“A Broadband 835-900-GHz Fundamental Balanced Mixer Based on Monolithic GaAs Membrane Schottky Diodes,”IEEETransactions on Microwave Theory and Techniques,vol.58,no.7,2010,pp.1917-1924.
    [32]Mann,C.Mark,“A novel 183GHz subharmonic Schottky diode mixer,”Queen Mary,University of London,1992.
    [33]J.Hesler,K.Hui,S.He,et al.,“A Fixed-Tuned 400GHz Subharmonic Mixer Using Planar Schottky Diodes,”International Symposium on Space Terahertz Technology,1999,pp.865-867.
    [34]B.Thomas,A.Maestrini and G.Beaudin,“A lownoise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes,”IEEE Microwave and Wireless Components Letters,vol.15,no.12,2005,pp.865-867.
    [35]I.Maestrojuan,I.Palacios,I.Ederra,et al.,“Use of COC substrates for millimeter-wave devices,”Microwave and Optical Technology Letters,vol.57,no.2,2015,pp.865-867.
    [36]B.Zhang,X.Chen,Y.Fan and G.Liu,“Design of a ultra-wideband remote sensing system based on Sub-Harmonic mixer,”Proc.IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting,2015,pp.524-525.
    [37]C.Risacher et al.,“First Supra-THz Heterodyne Array Receivers for Astronomy with the SOFIAObservatory,”IEEE Transactions on Terahertz Science and Technology,vol.6,no.2,2016,pp.199-211.
    [38]Z.Chen,B.Zhang,Y.Fan,et al.,“Design of a low noise 190-240GHz subharmonic mixer based on 3D geometric modeling of Schottky diodes and CAD load-pull techniques,”IEICE Electronics Express,vol.13,no.16,2016.
    [39]B.T.Bulcha et al.,“Design and Characterization of 1.8-3.2 THz Schottky-Based Harmonic Mixers,”IEEE Transactions on Terahertz Science and Technology,vol.6,no.5,2016,pp.737-746.
    [40]X.Yu,et al.,“400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer,”IEEE Transactions on Terahertz Science and Technology,vol.6,no.6,2016,pp.765-770.
    [41]A.J.Alazemi and G.M.Rebeiz,“A 100-300-GHz Free-Space Scalar Network Analyzer Using Compact Tx and Rx Modules,”IEEE Transactions on Microwave Theory and Techniques,vol.64,no.11,2016,pp.4021-4029.
    [42]E.Schlecht,J.Gill,R.Dengler,R.Lin,R.Tsang and I.Mehdi,“A Unique 520-590 GHz Biased Subharmonically-Pumped Schottky Mixer,”IEEEMicrowave and Wireless Components Letters,vol.17,no.12,2007,pp.879-881.
    [43]T.Bryllert,V.Drakinskiy,K.B.Cooper and J.Stake,“Integrated 200-240-GHz FMCW Radar Transceiver Module,”IEEE Transactions on Microwave Theory and Techniques,vol.61,no.10,2013,pp.3808-3815.
    [44]E.Schlecht,et al.,“Schottky Diode Based 1.2THz Receivers Operating at Room-Temperature and Below for Planetary Atmospheric Sounding,”IEEE Transactions on Terahertz Science and Technology,vol.4,no.6,2014,pp.661-669.
    [45]J.Treuttel,et al.,“A 520-620-GHz Schottky Receiver Front-End for Planetary Science and Remote Sensing With 1070 K-1500 K DSB Noise Temperature at Room Temperature,”IEEE Transactions on Terahertz Science and Technology,vol.6,no.1,2016,pp.148-155.
    [46]T.Reck,A.Zemora,E.Schlecht,R.Dengler,W.Deal and G.Chattopadhyay,“A 230 GHz MMIC-Based Sideband Separating Receiver,”IEEETransactions on Terahertz Science and Technology,vol.6,no.1,2016,pp.141-147.
    [47]G.Liu,B.Zhang,et al.,“420GHz subharmonic mixer based on heterogeneous integrated Schottky diode,”IEICE Electronics Express,vol.14,no.12,2017.
    [48]G.Liu,B.Zhang,et al.,“0.42THz Subharmonic Mixer Based on 3D Precisely Modeled Diode,”Journal of Infrared and Millimeter Waves,vol.24,no.6,2017.
    [49]N.Erickson,“High efficiency submillimeter frequency multipliers,”Proc.IEEE International Digest on Microwave Symposium,vol.3,pp.1301-1304,1990.
    [50]J.Thornton,C.M.Mann and P.de Maagt,“Optimization of a 250-GHz Schottky tripler using novel fabrication and design techniques,”IEEETransactions on Microwave Theory and Techniques,vol.46,no.8,1998,pp.1055-1061.
    [51]D.W.Porterfield,“A 200 GHz Broadband,FixedTuned,Planar Doubler,”International Symposium on Space THz Technology,1999.
    [52]A.Maestrini,et al.,“A 540-640-GHz high-efficiency four-anode frequency tripler,”IEEE Transactions on Microwave Theory and Techniques,vol.53,no.9,2005,pp.2835-2843.
    [53]D.W.Porterfield,“High-Efficiency Terahertz Frequency Triplers,”Proc.IEEE/MTT-S International Microwave Symposium,2007,pp.337-340.
    [54]A.Maestrini,et al.,“A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840-900-GHz Band,”IEEE Transactions on Microwave Theory and Techniques,vol.58,no.7,2010,pp.1925-1932.
    [55]J.V.Siles,et al.,“A Single-Waveguide In-Phase Power-Combined Frequency Doubler at 190GHz,”IEEE Microwave and Wireless Com-ponents Letters,vol.21,no.6,2011,pp.332-334.
    [56]A.Maestrini,et al.,“Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable From 2.48 to 2.75THz,”IEEE Transactions on Terahertz Science and Technology,vol.2,no.2,2012,pp.177-185.
    [57]V.Drakinskiy,P.Sobis,H.Zhao,et al.,“Terahertz GaAs Schottky diode mixer and multiplier MICs based on e-beam technology,”Proc.International Conference on Indium Phosphide and Related Materials,2013,pp.1-2.
    [58]J.V.Siles,et al.,“A High-Power 105-120 GHz Broadband On-Chip Power-Combined Frequency Tripler,”IEEE Microwave and Wireless Components Letters,vol.25,no.3,2015,pp.157-159.
    [59]H.Liu,J.Powell,C.Viegas,et al.,“A 332GHz frequency doubler using flip-chip mounted planar schottky diodes,”Proc.IEEE Asia-Pacific Microwave Conference(APMC),2015,pp.1-3.
    [60]B.Zhang,et al.,“The Design of an 850 GHz TMIC Doubler Based on Schottky Diode,”ESAAntenna Workshop on Antennas and RF systems for Space Science,2015.
    [61]R.Dahlb?ck,J.Vukusic,R.M.Weikle II and J.Stake,“A Tunable 240-290 GHz Waveguide Enclosed 2-D Grid HBV Frequency Tripler,”IEEETransactions on Terahertz Science and Technology,vol.6,no.3,2016,pp.503-509.
    [62]C.Yao,M.Zhou,Y.Luo,“A High Power 320-356GHz Frequency Multipliers with Schottky Diodes,”Chinese Journal of Electronics,vol.25,no.5,2016,pp.986-990.
    [63]T.Waliwander,M.Fehilly and E.O’Brien,“An ultra-high efficiency high power Schottky varactor frequency doubler to 180-200 GHz,”IEEEMillimeter Waves,2016,pp.1-4.
    [64]J.Montero-de-Paz,M.Sobornytskyy,M.Hoefle and O.Cojocari,“High power 150 GHz Schottky based varactor doubler,”IEEE Millimeter Waves,2016,pp.1-4.
    [65]Z.Chen,H.Wang,B.Alderman,et al.,“190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate,”IEICE Electronics Express,vol.13,no.22,2016.
    [66]S.Carpenter,Z.S.He,V.Vassilev and H.Zirath,“A+14.2 dBm,90-140 GHz Wideband Frequency Tripler in 250-nm InP DHBT Technology,”IEEEMicrowave and Wireless Components Letters,vol.28,no.3,2018,pp.239-241.
    [67]J.Deng,Y.Yang,Z.Zhu and X.Luo,“A 140-220-GHz Balanced Doubler with 8.7%-12.7%Efficiency,”IEEE Microwave and Wireless Components Letters,vol.28,no.6,2018,pp.515-517.
    [68]G.Chattopadhyay,“Technology,Capabilities,and Performance of Low Power Teraher tz Sources,”IEEE Transactions on Terahertz Science and Technology,vol.1,no.1,2011,pp.33-53.
    [69]H.T.Chen,et al.,“Active terahertz metamaterial devices,”Nature,vol.444,no.7119,2006,pp.597-600.
    [70]N.H.Shen,et al.,“Optically implemented broadband blueshift switch in the terahertz regime,”Physical Review Letters,vol.106,no.3,2011,pp.037403.
    [71]D.Shrekenhamer,S.Rout,A.C.Strikwerda,et al.,“High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,”Optics Express,vol.19,no.10,2011,pp.9968-9975.
    [72]Z.Zhou,et al.,“High performance metamaterials-high electron mobility transistors integrated terahertz modulator,”Optics Express,vol.25,no.15,2017,pp.17832.
    [73]G.Scalari,et al.,“Ultrastrong coupling of the cyclotron transition of a two-dimensional electron gas to a THz metamaterial,”Science,vol.335,no.6074,2012,pp.1323-1326.
    [74]Y.X.Zhang,et al.,“Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,”Nano Letters,vol.15,no.5,2015,pp.3501.
    [75]W.L.Chan,et al.,“A spatial light modulator for terahertz beams,”Applied Physics Letters,vol.94,no.21,2009,pp.26.
    [76]D.Shrekenhamer,et al.,“Four-Color Metamaterial Absorber THz Spa-tial Light Modulator,”Advanced Optical Materials,vol.1,no.12,2013,pp.905-909.
    [77]C.M.Watts,et al.,“Terahertz compressive imaging with metamaterial spatial light modulators,”Nature photonics,vol.8,no.8,2014,pp.605-609.
    [78]S.Rout,et al.,“A low-voltage high-speed terahertz spatial light modulator using active metamaterial,”APL Photonics,vol.1,no.8,2016,pp.45-25.
    [79]W.L.Gao,et al.,“High-Contrast Terahertz Wave Modulation by Gated Graphene Enhanced by Extraordinary Transmission through Ring Apertures,”Nano Letters,vol.14,no.3,2014,pp.1242.
    [80]G.Z.Liang,et al.,“Integrated Teraher tz Graphene Modulator with 100%Modulation Depth,”Acs Photonics,vol.2,no.11,2015,pp.151019111132002.
    [81]M.Mittendorff,et al.,“Graphene-Based Waveguide-Integrated Terahertz Modulator,”ACSPhotonics,vol.4,no.2,2017.
    [82]Y.X.Zhang,et al.,“Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,”Optics Express,vol.22,no.9,2014,pp.11070-11078.
    [83]L.Liu,et al.,“Hybrid metamaterials for electrically triggered multifunctional control,”Nature communication,vol.7,2016,pp.13236.
    [84]W.Zheng,et al.,“Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,”AIP Advances,vol.6,no.7,2016,pp.97.
    [85]H.T.Chen,et al.,“A metamaterial solid-state terahertz phase modulator,”Nature Photonics,vol.3,no.3,2009,pp.148-151.
    [86]J.M.Manceau,et al.,“Dynamic response of metamaterials in the terahertz regime:Blueshift tunability and broadband phase modulation,”Applied Physics Letters,vol.96,2010,pp.021111.
    [87]S.H.Lee,et al.,“Switching terahertz waves with gate-controlled active graphene metamaterials,”Nature Materials,vol.11,no.11,2012,pp.936-941.
    [88]Y.Urade,et al.,“Dynamically Babinet-invertible metasurface:a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition,”Optics Express,vol.24,no.5,2016,pp.4405-4410.
    [89]Y.C.Zhao,et al.,“Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,”ACS Photonics,vol.5,2018,pp.3040-3050.
    [90]D.H.Auston and P.R.Smith,“Generation and detection of millimeter waves by picosecond photoconductivity,”Applied Physics Letters,vol.43,no.7,1983,pp.631-633.
    [91]P.R.Smith,D.H.Auston and M.C.Nuss,“Subpicosecond photoconducting dipole antennas,”IEEE Journal of Quantum Electronics,vol.24,no.2,1988,pp.255-260.
    [92]H.Liu,J.Yu,P.Huggard,B.Alderman,“A multichannel THz detector using integrated bowtie antennas,”International Journal of Antennas and Propagation,vol.2013,no.3,2013,pp.607-610.
    [93]R.Mendis,C.Sydlo,J.Sigmund,“Spectral characterization of broad-band THz antennas by photoconductive mixing:toward optimal antenna design,”IEEE Antennas and Wireless Propagation Letters,vol.4,no.1,2005,pp.85-88.
    [94]K.Han,TK.Nguyen,H.Han,I.Park,“Yagi-Uda antennas for terahertz photomixer,”International Workshop on Antenna Technology,2010,pp.1-4.
    [95]A.Gonzalez,Y.Uzawa,“Tolerance analysis of ALMA band 10 corru-gated horns and optics,”IEEE Transactions on Antennas and Propagation,vol.60,no.7,2012,pp.3137-3145.
    [96]M.Paquay,D.Dubruel,G.Forma,J.Marti-Canales,R.Wylde,L.Rolo,“Quasi optical instrumentation for the planck fm telescope rf alignment verification measurements at 320 GHz,”Proc.Annual meeting and symposium-antenna measurement techniques association,vol.1,2007,pp.4-9.
    [97]JL.Hesler,AR.Kerr,W.Grammer,E.Wollack,“Recommendations for waveguide interfaces to1 THz,”Karpov A(ed)Proceedings of the eighteenth international symposium on space terahertz technology,vol.1,2007,pp.1-7.
    [98]RJ.Martin,DH.Martin,“Quasi-optical antennas for radiometric remote-sensing,”Electronics and Communication Engineering Journal,vol.8,no.1,2002,pp.37.
    [99]D.Dominic,P.Goran,T.Jan,“The Herschel and Planck space telescopes,”Proceedings of the IEEE,vol.97,no.8,2009,pp.1403-1411.
    [100]A.Tamminen,J.Ala-Laurinaho,D.Gomes-Martins,“Reflectarray for 120-GHz beam steering application:Design,simulations,and measurements,”Proc.SPIE-The International Society for Optical Engineering,vol.8362,2012,pp.4.
    [101]G.Perez-Palomino,P.Baine,R.Dickie,M.Bain,J.A.Encinar,R.Cahill,M.Barba,and G.Toso,“Design and experimental validation of liquid crystal-based reconfigurable reflectarray elements with improved bandwidth in F-band,”IEEETransmission Antennas Propagation,vol.61,no.4,2013,pp.1704-1713.
    [102]E.Carrasco,M.Tamagnone,and J.Perruisseau-Carrier,“Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,”Applied Physics Letters,vol.102,no.10,2013,pp.183-947.
    [103]C.Jastrow,K.Munter,R.Piesiewicz,T.Kurner,M.Koch,T.Kleine-Ostmann,“300 GHz transmission system,”Electronics Letters,vol.44,no.3,2008,pp.213-214.
    [104]T.Kleine-Ostmann and T.Nagatsuma,“A review on terahertz commu-nications research,”Journal of Infrared Millimeter and Terahertz Waves,vol.32,no.2,2011,pp.143-171.
    [105]R.Piesiewicz,et al.,“Short-range ultra-broadband terahertz communications:Concepts and perspectives,”IEEE Antennas Propagation Magazine,vol.49,no.6,2007,pp.24-39.
    [106]S.Priebe,C.Jastrow,M.Jacob,T.Kleine-Ostmann,T.Schrader and T.Kurner,“Channel and Propagation Measurements at 300 GHz,”IEEETransactions on Antennas and Propagation,vol.59,no.5,2011,pp.1688-1698.
    [107]Z.Irahhauten,H.Nikookar and G.J.M.Janssen,“An overview of ultra-wide band indoor channel measurements and modeling,”IEEE Microwave and Wireless Components Letters,vol.14,no.8,2004,pp.386-388.
    [108]C.Lin and G.Y.Li,“Indoor Terahertz Communications:How Many Antenna Arrays Are Needed?,”IEEE Transactions on Wireless Communications,vol.14,no.6,2015,pp.3097-3107.
    [109]Y.Yang,M.Mandehgar and D.R.Grischkowsky,“Understanding THz Pulse Propagation in the Atmosphere,”IEEE Transactions on Terahertz Science and Technology,vol.2,no.4,2012,pp.406-415.
    [110]C.Han and Y.Chen,“Propagation Modeling for Wireless Communications in the Terahertz Band,”IEEE Communications Magazine,vol.56,no.6,2018,pp.96-101.
    [111]R.Piesiewicz,T.Kleine-Ostmann,N.Krumbholz,D.Mittleman,M.Koch,T.Krner,“Terahertz Characterisation of Building Materials,”Electronics Letters,vol.41,2005,pp.1002-1004.
    [112]R.Piesiewicz,C.Jansen,D.Mittleman,T.Kleine-Ostmann,M.Koch,and T.Krner,“Scattering analysis for the modeling of THz communication systems,”IEEE Transmission Antennas Propagation,vol.55,no.11,2007,pp.3002-3009.
    [113]C.Jansen,R.Piesiewicz,D.Mittleman,T.Krner,and M.Koch,“The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,”IEEE Transmission Antennas Propagation,vol.56,no.5,2008,pp.1413-1419.
    [114]J.M.Jornet and I.F.Akyildiz,“Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band,”IEEE Transactions on Wireless Communications,vol.10,no.10,2011,pp.3211-3221.
    [115]C.Han,A.O.Bicen,and I.F.Akyildiz,“Multiray channel modeling and wideband characterization for wireless communications in the terahertz band,”IEEE Transactions on Wireless Communications,vol.14,no.5,2015,pp.2402-2412.
    [116]A.Moldovan,M.A.Ruder,I.F.Akyildiz and W.H.Gerstacker,“LOS and NLOS channel modeling for terahertz wireless communication with scattered rays,”Proc.IEEE Globecom Workshops(GC Wkshps),2014,pp.388-392.
    [117]J.Kokkoniemi,J.Lehtomki,K.Umebayashi and M.Juntti,“Frequency and Time Domain Channel Models for Nanonetworks in Terahertz Band,”IEEE Transactions on Antennas and Propagation,vol.63,no.2,2015,pp.678-691.
    [118]D.He,et al.,“Channel modeling for Kiosk downloading communication system at 300GHz,”Proc.European Conference on Antennas and Propagation(EUCAP),2017,pp.1331-1335.
    [119]S.Priebe,M.Jacob,C.Jastrow,T.Kleine-Ostmann,T.Schrader and T.Krner,“A comparison of indoor channel measurements and ray tracing simulations at 300 GHz,”Proc.International Conference on Infrared,Millimeter,and Terahertz Waves,Rome,2010,pp.1-2.
    [120]S.Priebe,M.Kannicht,M.Jacob and T.Krner,“Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies,”Journal of Communications and Net-works,vol.15,no.6,2013,pp.547-558.
    [121]A.Gureev,M.Cherniakov,E.Marchetti and I.Gureev,“Channel description in the low-THz wireless communications,”Proc.IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering(EIConRus),2017,pp.1240-1243.
    [122]C.Han and I.F.Akyildiz,“Three-Dimensional End-to-End Modeling and Analysis for Graphene-Enabled Terahertz Band Communications,”IEEE Transactions on Vehicular Technology,vol.66,no.7,2017,pp.5626-5634.
    [123]C.Zhang,C.Han and I.F.Akyildiz,“Three Dimensional End-to-End Modeling and Directivity Analysis for Graphene-Based Antennas in the Terahertz Band,”Proc.IEEE Global Communications Conference(GLOBECOM),2015,pp.1-6.
    [124]S.Priebe and T.Krner,“Stochastic modeling of THz indoor radio channels,”IEEE Transactions on Wireless Communications,vol.12,no.9,2013,pp.4445-4455.
    [125]D.He,et al.,“Stochastic Channel Modeling for Kiosk Applications in the Terahertz Band,”IEEETransactions on Terahertz Science and Technology,vol.7,no.5,2017,pp.502-513.
    [126]D.Cassioli,M.Z.Win and A.F.Molisch,“The ultra-wide bandwidth indoor channel:from statistical model to simulations,”IEEE Journal on Selected Areas in Communications,vol.20,no.6,2002,pp.1247-1257.
    [127]S.Kim and A.Zaji,“Statistical Modeling and Simulation of Short-Range Device-to-Device Communication Channels at Sub-THz Frequencies,”IEEE Transactions on Wireless Communications,vol.15,no.9,2016,pp.6423-6433.
    [128]S.Kim and A.Zajic,“Statistical modeling of THz scatter channels,”Proc.IEEE EuCAP,2015,pp.1-5.
    [129]A.R.Ekti,et al.,“Statistical modeling of propagation channels for Terahertz band,”Proc.IEEEConference on Standards for Communications and Networking(CSCN),2017,pp.275-280.
    [130]S.Nie and I.F.Akyildiz,“Three-dimensional dynamic channel modeling and tracking for terahertz band indoor communications,”IEEEAnnual International Symposium on Personal,Indoor,and Mobile Radio Communications(PIM-RC),Montreal,QC,2017,pp.1-5.
    [131]A.Alkhateeb,O.E.Ayach,G.Leus,and R.W.Heath,“Channel estimation and hybrid precoding for millimeter wave cellular systems,”IEEEJournal of Selected Topics in Signal Processing,vol.8,no.5,2014,pp.831-846.
    [132]Z.Zhou,J.Fang,L.Yang,and H.Li,“Channel Estimation for Millimeter-Wave Multiuser MIMOSystems via PARAFAC Decomposi-tion,”IEEETransactions on Wireless Communications,vol.15,no.11,2016,pp.7501-7516.
    [133]X.Gao,L.Dai,Y.Zhang,and T.Xie,“Fast Channel Tracking for Terahertz Beamspace Massive MIMO Systems,”IEEE Transactions on Vehicular Technology,vol.66,no.7,2016,pp.5689-5696.
    [134]T.Kleine-Ostmann,C.Jastrow,S.Priebe,M.Jacob,T.Krner and T.Schrader,“Measurement of channel and propagation properties at 300GHz,”Proc.Precision electromagnetic Measurements,2012,pp.258-259.
    [135]S.Hur,T.Kim,D.J.Love,J.V.Krogmeier,T.A.Thomas and A.Ghosh,“Millimeter Wave Beamforming for Wireless Backhaul and Ac-cess in Small Cell Networks,”IEEE Transactions on Communications,vol.61,no.10,2013,pp.4391-4403.
    [136]Z.Xiao,T.He,P.Xia and X.Xia,“Hierarchical Codebook Design for Beamforming Training in Millimeter-Wave Communication,”IEEE Transactions on Wireless Communications,vol.15,no.5,2016,pp.3380-3392.
    [137]S.He,J.Wang,Y.Huang,B.Ottersten and W.Hong,“Codebook-Based Hybrid Precoding for Millimeter Wave Multiuser Systems,”IEEE Transactions on Signal Processing,vol.65,no.20,2017,pp.5289-5304.
    [138]J.Zhang,Y.Huang,Q.Shi,J.Wang and L.Yang,“Codebook Design for Beam Alignment in Millimeter Wave Communication Systems,”IEEETransactions on Communications,vol.65,no.11,2017,pp.4980-4995.
    [139]S.Wu,L.Chiu,K.Lin and T.Chang,“Robust Hybrid Beamforming with Phased Antenna Arrays for Downlink SDMA in Indoor 60 GHz Channels,”IEEE Transactions on Wireless Communications,vol.12,no.9,2013,pp.4542-4557.
    [140]O.E.Ayach,S.Rajagopal,S.Abu-Surra,Z.Pi and R.W.Heath,“Spatially Sparse Precoding in Millimeter Wave MIMO Systems,”IEEE Transactions on Wireless Communications,vol.13,no.3,2014,pp.1499-1513.
    [141]C.Chen,C.Tsai,Y.Liu,W.Hung and A.Wu,“Compressive Sensing(CS)Assisted Low-Complexity Beamspace Hybrid Precoding for Millimeter-Wave MIMO Systems,”IEEE Transactions on Signal Processing,vol.65,no.6,2017,pp.1412-1424.
    [142]X.Huang,Y.J.Guo and J.D.Bunton,“A hybrid adaptive antenna array,”IEEE Transactions on Wireless Communications,vol.9,no.5,2010,pp.1770-1779.
    [143]J.Zhang,Y.Huang,T.Yu,J.Wang and M.Xiao,“Hybrid Precoding for Multi-Subarray Millimeter-Wave Communication Systems,”IEEE Wireless Communications Letters,vol.7,no.3,2018,pp.440-443.
    [144]J.Zhang,Y.Huang,J.Wang,B.Ottersten and L.Yang,“Per-Antenna Constant Envelope Precoding and Antenna Subset Selection:A Geometric Approach,”IEEE Transactions on Signal Processing,vol.64,no.23,2016,pp.6089-6104.
    [145]I.F.Akyildiz,J.M.Jornet and C.Han,“TeraNets:ultra-broadband communication networks in the terahertz band,”IEEE Wireless Communications,vol.21,no.4,2014,pp.130-135.
    [146]C.Lin and G.Y.Li,“Adaptive Beamforming With Resource Allocation for Distance-Aware Multi-User Indoor Terahertz Communications,”IEEE Transactions on Communications,vol.63,no.8,2015,pp.2985-2995.
    [147]S.A.Hoseini,M.Ding and M.Hassan,“Massive MIMO Performance Comparison of Beamforming and Multiplexing in the Terahertz Band,”Proc.IEEE Globecom Workshops(GC Wkshps),2017,pp.1-6.
    [148]M.Gao,et al.,“Dynamic mmWave beam tracking for high speed railway communications,”Proc.IEEE Wireless Communications and Networking Conference Workshops(WCNCW),2018,pp.278-283.
    [149]Junyi Wang et al.,“Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,”IEEE Journal on Selected Areas in Communications,vol.27,no.8,2009,pp.1390-139.
    [150]S.Kutty and D.Sen,“Beamforming for Millimeter Wave Communications:An Inclusive Survey,”IEEE Communications Surveys and Tutorials,vol.18,no.2,2016,pp.949-973.
    [151]D.Zhang,H.Chen,M.Shirvanimoghaddam,Y.Li and B.Vucetic,“Training Beam Sequence Optimization for Millimeter Wave MIMO Tracking Systems,”Proc.IEEE International Conference on Communications(ICC),2018,pp.1-6.
    [152]J.Zhao,F.Gao,W.Jia,S.Zhang,S.Jin and H.Lin,“Angle Domain Hybrid Precoding and Channel Tracking for Millimeter Wave Massive MIMOSystems,”IEEE Transactions on Wireless Communications,vol.16,no.10,2017,pp.6868-6880.
    [153]S.Jayaprakasam,X.Ma,J.W.Choi and S.Kim,“Robust Beam-Tracking for mmWave Mobile Communications,”IEEE Communications Letters,vol.21,no.12,2017,pp.2654-2657.
    [154]J.Wang,et al.,“Beamforming Codebook Design and Performance Evaluation for 60GHz Wideband WPANs,”Proc.IEEE 70th Vehicular Technology Conference Fall,2009,pp.1-6.
    [155]H.Elayan,O.Amin,R.M.Shubair and M.Alouini,“Terahertz communication:The opportunities of wireless technology beyond 5G,”Proc.Advanced Communication Technologies and Networking(CommNet),Marrakech,2018,pp.1-5.
    [156]B.Peng,S.Priebe and T.Krner,“Fast beam searching concept for indoor Terahertz communications,”Proc.Antennas and Propagation(EuCAP 2014),2014,pp.639-643.
    [157]V.Petrov,A.Pyattaev,D.Moltchanov and Y.Koucheryavy,“Terahertz band communications:Applications,research challenges,and standardization activities,”Proc.International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops(ICUMT),2016,pp.183-190.
    [158]B.Peng,Q.Jiao and T.Krner,“Angle of arrival estimation in dynamic indoor THz channels with Bayesian filter and reinforcement learning,”Proc.European Signal Processing Conference(EUSIPCO),2016,pp.1975-1979.
    [159]M.Koch,“THz communications:a 2020 vision in THz frequency detection and identification of materials and objects,”Netherlands:Springer,2007,pp.325-338.
    [160]T.Nagatsuma,S.Horiguchi,Y.Minamikata,et al.,“THz wireless communications based on photonics technologies,”Optics Express,vol.21,no.20,2013,pp.23736-23747.
    [161]G.Ducournau,P.Szriftgiser,F.Pavanello,et al.,“THz communications using photonics and electronic devices:the race to data-rate,”Journal of Infrared,Millimeter,and THz Waves,vol.36,no.2,2015,pp.198-220.
    [162]T.Nagatsuma,G.Carpintero,“Recent progress and future prospect of photonics-enabled THz communications research,”IEICE Transactions on Electronics,vol.98,no.12,2015,pp.1060-1070.
    [163]T.Nagatsuma,G.Ducournau,C.C.Renaud,“Advances in THz communications accelerated by photonics,”Nature Photonics,vol.10,no.6,2016,pp.371-379.
    [164]G.Ducournau,P.Szriftgiser,D.Bacquet,et al.,“Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,”Electronics Letters,vol.46,no.19,2016,pp.1349-1351.
    [165]M.J.Fice,E.Rouvalis,D.F.Van,et al.,“146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,”Optics Express,vol.20,no.2,2012,pp.1769.
    [166]G.Ducournau,P.Szriftgiser,A.Beck,et al.,“Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,”IEEETransactions on THz Science and Technology,vol.4,no.3,2014,pp.328-337.
    [167]M.Lee,M.C.Wanke.,“Searching for a solid-state THz technology,”Science,vol.316,no.5821,2007,pp.64-65.
    [168]S.Kodama,H.Ito,T.Nagatsuma,et al.,“InP/InGaAs uni-traveling-carrier photodiodes,”IEICETransactions on Electronics,vol.83,no.6,2000,pp.938-949.
    [169]A.Hirata,M.Harada,T.Nagatsuma.,“120-GHz wireless link using photonic techniques for generation,modulation,and emission of millimeter-wave signals,”Lightwave Technology Journal,vol.21,no.10,2003,pp.2145-2153.
    [170]A.Hirata,R.Yamaguchi,T.Kosugi,et al.,“10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,”IEEE Transactions on Microwave Theory and Techniques,vol.57,no.5,2009,pp.1102-1109.
    [171]H.Takahashi,T.Kosugi,A.Hirata,et al.,“10-Gbit/s BPSK modulator and demodulator for a120-GHz-band wireless link,”IEEE Transactions on Microwave Theory and Techniques,vol.59,no.5,2011,pp.1361-1368.
    [172]H.Takahashi,T.Kosugi,A.Hirata,et al.,“10-Gbit/s quadrature phase-shift-keying modulator and demodulator for 120-GHz-band wireless links,”IEEE Transactions on Microwave Theory and Techniques,vol.58,no.12,2010,pp.4072-4078.
    [173]H.Takahashi,T.Kosugi,A.Hirata,et al.,“120-GHz-band fully inte-grated wireless link using QSPK for real-time 10-Gbit/s transmission,”IEEE Transactions on Microwave Theory and Techniques,vol.61,no.12,2013,pp.4745-4753.
    [174]A.Hirata,T.Kosugi,H.Takahashi,et al.,“120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission,”IEEETransactions on Microwave Theory and Techniques,vol.60,no.3,2012,pp.881-895.
    [175]T.Kleine-Ostmann,K.Pierz,G.Hein,et al.,“Audio signal transmission over THz communication channel using semiconductor modulator,”Electronics Letters,vol.40,no.2,2004,pp.124-126.
    [176]I.Kallfass,J.Antes,T.Schneider,et al.,“All active MMIC-based wireless communication at220 GHz,”IEEE Transactions on THz Science and Technology,vol.1,no.2,2011,pp.477-487.
    [177]S.Koenig,D.Lopez-Diaz,J.Antes,et al.,“Wireless sub-THz commu-nication system with high data rate,”Nature Photonics,vol.7,no.12,2013,pp.977-981.
    [178]I.Kallfass,F.Boes,T.Messinger,et al.,“64 Gbit/s transmission over 850 m fixed wireless link at240 GHz carrier frequency,”Journal of Infrared,Millimeter,and THz Waves,vol.36,no.2,2015,pp.221-233.
    [179]D.Lopez-Diaz,I.Kallfass,A.Tessmann,et al.,“Asubharmonic chipset for gigabit communication around 240 GHz,”IEEE MTT-S International Microwave Symposium Digest,Montreal,2012,pp.1-3.
    [180]J.Antes,F.Boes,T.Messinger,et al.,“Multi-gigabit millimeter-wave wireless communication in realistic transmission environments,”IEEE Transactions on THz Science and Technology,vol.5,no.6,2015,pp.1078-1087.
    [181]I.Kallfass,I.Dan,S.Rey,et al.,“Towards MMIC-based 300GHz indoor wireless communication systems,”IEICE Transactions on Electronics,vol.98,no.12,2015,pp.1081-1090.
    [182]Zhe Chen,B.Zhang,Y.Zhang,et al.,“220 GHz outdoor wireless communication system based on a Schottky-diode transceiver,”IEICE Electronics Express,vol.13,no.9,2016.
    [183]C.Wang,B.Lu,C.Lin,et al.,“0.34-THz wireless link based on high-order modulation for future wireless local area network applications,”IEEETransactions on THz Science and Technology,vol.4,no.1,2014,pp.75-85.
    [184]B.Cheng,G.Jiang,C.Wang,et al.,“Real-time imaging with a 140 GHz inverse synthetic aperture radar,”IEEE Transactions on THz Science and Technology,vol.3,no.5,2013,pp.594-605.
    [185]Y.Ding,X.Shi,S.Gao,H.Wu and R.Zhang,“Analysis of tracking-pointing error and platform vibration effect in inter-satellite terahertz communication system,”Proc.Chinese Automation Congress(CAC),2017,pp.430-434.
    [186]F.Okano,M.Kanazawa,K.Mitani,K.Hamasaki,M.Sugawara,M.Seino,A.Mochimaru,and K.Doi,“Ultrahigh-definition television system with4000 scanning lines,”Proc.NAB Broadcast Enginner Conference,2004,pp.437-440.
    [187]J.Federici and L.Moeller,“Review of terahertz and subterahertz wireless communications,”Journal of Applied Physics,vol.107,no.11,2010,pp.6-323.
    [188]Q.Wang,Z.Chen and H.Li,“Energy-efficient trajectory planning for UAV-aided secure communication,”China Communications,vol.15,no.5,2018,pp.51-60.
    [189]A.Shehabi,et al.,“United States data center energy usage report,”Technical Report LBNL-1005775,Ernest Orlando Lawrence Berkeley National Laboratory,2016.
    [190]D.Abts,M.R.Marty,P.M.Wells,P.Klausler,and H.Liu,“Energy proportional datacenter networks,”SIGARCH Comput.Archit.News,vol.38,no.3,2010,pp.338-347.
    [191]A.Greenberg,J.Hamilton,D.A.Maltz,and P.Patel,“The cost of a cloud:research problems in data center networks,”Comput.Commun.Rev.,vol.39,no.1,2008,pp.68-73.
    [192]A.Greenberg,J.R.Hamilton,N.Jain,S.Kandula,C.Kim,P.Lahiri,D.A.Maltz,P.Patel,and S.Sengupta,“Vl2:a scalable and flexible data center network,”Communications of the Acm,vol.54,no.4,2009,pp.95-104.
    [193]M.Al-Fares,A.Loukissas and A.Vahdat,“Ascalable,commodity data center network architecture,”Proc.ACM SIGCOMM Conference Applications,Technologies,Archit.,Protocols Comput.Communication,2008,pp.63-74.
    [194]K.Ramachandran,R.Kokku,R.Mahindra,S.Rangarajan,“60 GHz Data-Center Networking:Wireless Worry less?,”Nec Laboratories America,2008.
    [195]S.Mumtaz,A.Morgado,K.M.S.Huq,“A survey of 5G technologies:Regulatory,standardization and industrial perspectives,”Digital Communications and Networks,2017.
    [196]S.Mollahasani,E.Onur,“Evaluation of terahertz channel in data centers,”Proc.Network Operations and Management Symposium,2016,pp.727-730.
    [197]B.Peng,T.Kurner,“A stochastic channel model for future wireless THz data centers,”Proc.International Symposium on Wireless Communication Systems,2015,pp.741-745.
    [198]J.Y.Shin,E.G.Sirer,H.Weatherspoon,D.Kirovski,“On the feasibility of completely wireless datacenters,”IEEE ACM Transactions on Networking,vol.21,no.5,2013,pp.1666-1679.
    [199]A.Cayley,“On the theory of groups,”Amer.J.Math.,vol.11,no.2,pp.139-157.
    [200]S.A.Mamun,S.G.Umamaheswaran,A.Ganguly,M.Kwon and A.Kwasinski,“Performance Evaluation of a Power-Efficient and Robust60GHz Wireless Server-to-Server Datacenter Network,”IEEE Transactions on Green Communications and Networking,2018.
    [201]S.G.U m a m a h e s w a r a n,S.A.M a m u n,A.Ganguly,“Reducing Power Consumption of Datacenter Networks with 60GHz Wireless Server-to-Server Links,”Proc.Global Communications Conference,2017,pp.1-7.
    [202]S.U.Hwu,K.B.deSilva and C.T.Jih,“Terahertz(THz)wireless systems for space applications,”IEEE Sensors Applications Symposium Proceedings,2013,pp.171-175.
    [203]K.-C.Huang,Z.Wang,“THz terabit wireless communication,”IEEE Microwave Magazine,vol.12,no.4,2011,pp.108-116.
    [204]T.Kleine-Ostmann,T.Nagatsuma,“A review on THz communications research,”Journal of Infrared,Millimeter,and THz Waves,vol.32,no.2,2011,pp.143-171.
    [205]T.Schneider,A.Wiatrek,S.Preuler,et al.,“Link budget analysis for THz fixed wireless links,”IEEE Transactions on THz Science and Technology,vol.2,no.2,2012,pp.250-256.
    [206]I.F.Akyildiz,J.M.Jornet,C.Han,“THz band:next frontier for wireless communications,”Physical Communication,vol.12,no.9,2014,pp.16-32.
    [207]A.Hirata,M.Yaita,“Ultrafast THz wireless communications technolo-gies,”IEEE Transactions on THz Science and Technology,vol.5,no.6,2015,pp.1128-1132.
    [208]J.F.Federici and J.Ma,“Comparison of terahertz versus infrared free space communications under identical weather conditions,”Proc.Infrared,Millimeter,and Terahertz waves,2014,pp.1-3.
    [209]M.Tonouchi,“Cutting-edge terahertz technology,”Nature photonics,vol.1,2007,pp.97-106.
    [210]M.J.Fitch and R.Osiander,“Terahertz Waves for Communications and sensing,”Johns Hopkins APL Technical Digest,vol.25,no.4,2004.
    [211]I.Mehdi,“THz instruments for space exploration,”Proc.IEEE Asia Pacific Microwave Conference(APMC),2017,pp.410-413.
    [212]P.H.Siegel,“THz for space:The golden age,”Proc.IEEE MTT-S International Microwave Symposium,2010,pp.1-1.
    [213]P.H.Siegel,“THz Instruments for Space,”IEEETransactions on Antennas and Propagation,vol.55,no.11,2007,pp.2957-2965.
    [214]T.de Graauw,et al.,“The Herschel-heterodyne instrument for the far infrared(HIFI),”Spie,vol.7010,no.7,2004.
    [215]L.A.Samoska,“An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime,”IEEE Transactions on Terahertz Science and Technology,vol.1,no.1,2011,pp.9-24.
    [216]W.R.Deal,X.B.Mei,V.Radisic,et al.,“Demonstration of a S-MMIC LNA with 16-dB gain at 340-GHz,Proc.IEEE CSIC Conference,2007,pp.1-4.
    [217]A.Tessmann,A.Leuther,V.Hurm,et al.,“A 300GHz mHEMT amplifier module,Proc.IEEE IRPMConference,2009,pp.196-199.
    [218]W.R.Deal,K.Leong,V.Radisic,et al.,“0.48 THz Amplification with InP HEMT Transistors,IEEEMicrowave and Wireless Components Letters,vol.19,no.5,2010,pp.289-291.
    [219]W.R.Deal,“Solid-state Amplifiers for Terahertz Electronics,Microwave Symposium Digest,vol.29,no.16,2010,pp.1122-1125.
    [220]A.Tessmann,A.Leuther,R.Loesch,et al.,“Ametamorphic HEMT S-MMIC amplifier with16.1 dB gain at 460 GHz,Proc.IEEE CSIC,2010,pp.245-248.
    [221]J.N.Laska,“Regime change:Sampling rate vs.bit-depth in compres-sive sensing,”Ph.D.dissertation,Rice University,2011.
    [222]H.Papadopoulos,G.Wornell,and A.Oppenheim,“Sequential signal encoding from noisy measurements using quantizers with dynamic bias control,”IEEE Press,2001,pp.978-1002.
    [223]F.Li,J.Fang,H.Li,and L.Huang,“Robust onebit Bayesian com-pressed sensing with signflip errors,”IEEE Signal Processing Letters,vol.22,no.7,2015,pp.857-861.
    [224]J.Mo,P.Schniter,N.G.Prelcic,and R.W.Heath,“Channel estimation in millimeter wave MIMOsystems with one-bit quantization,”Proc.URSIAsia-Pacific Radio Science Conference,2014,pp.957-961.
    [225]T.Wang,C.Wen,H.Wang,F.Gao,T.Jiang and S.Jin,“Deep learning for wireless physical layer:Opportunities and challenges,”China Communications,vol.14,no.11,2017,pp.92-111.
    [226]J.Ren and Z.Wang,“A novel deep learning method for application identification in wireless network,”China Communications,vol.15,no.10,2018,pp.73-83.
    [227]S.Huang,M.Li,L.Zhao,“An intelligent neighbor discovery algorithm for Ad Hoc networks with directional antennas,”Proc.International Conference on Mechatronic Sciences,Electric Engineering and Computer,2014,pp.302-305.
    [228]R.Ramanathan,“On the performance of ad hoc networks with beamforming antennas,”Proc.Acm Mobile Ad Hoc Networking and Computing,2001,pp.95-105.
    [229]Y.Ko,N.H.Vaidya.,“Medium Access Control Protocols using Directional Antennas in Ad Hoc Networks,”Texas A and M University,vol.1,1999,pp.13-21.
    [230]S.Yi,Y.Pei,S.Kalyanaraman,“On the capacity improvement of ad hoc wireless networks using directional antennas,”Proc.ACM International Symposium on Mobile Ad Hoc NETWORKINGand Computing,2003,pp.108-116.
    [231]Y.Wang,J.J.Garcia-Luna-Aceves,“Spatial reuse and collision avoidance in ad hoc networks with directional antennas,”Proc.IEEE Global Telecommunications Conference,vol.1,2002,pp.112-116.
    [232]S.Vasudevan,J.Kurose,D.Towsley,“On Neighbor Discovery in Wireless Networks with Directional Antennas,”Proc.IEEE INFOCOM,vol.4,2005,pp.2502-2512.
    [233]Z.Zhang and B.Li,“Neighbor discovery in mobile ad hoc self-configuring networks with directional antennas:algorithms and comparisons,”IEEE Transactions on Wireless Communications,vol.7,no.5,2009,pp.1540-1549.
    [234]S.A.Borbash,A.Ephremides,M.J.Mcglynn,“An asynchronous neighbor discovery algorithm for wireless sensor networks,”Ad Hoc Networks,vol.5,no.7,2007,pp.998-1016.
    [235]P.Dutta,D.Culler,“Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications,”Proc.ACM Conference on Embedded Network Sensor Systems,2008,pp.71-84.
    [236]Z.Zhang,“Performance of neighbor discovery algorithms in mobile ad hoc self-configuring networks with directional antennas,”Proc.IEEEMilitary Communications Conference,vol.5,2005,pp.3162-3168.
    [237]D.Zhang,T.He,Y.Liu,“Poster:Neighbor discovery with distributed quorum system,”Proc.International Conference on Embedded Networked Sensor Systems,2011,pp.369-370.
    [238]Z.S.Zhang,“DTRA:directional transmission and reception algorithms in WLANs with directional antennas for QoS support,”IEEE Network the Magazine of Global Internetworking,vol.19,no.3,2005,pp.27-32.
    [239]W.Xiong,B.Liu,L.Gui,“Neighbor Discovery with Directional Antennas in Mobile Ad-Hoc Networks,”Proc.Global Telecommunications Conference,2011,pp.1-5.
    [240]R.Zhang,J.C.Sun,Y.C.Zhang,X.X.Huang,“Jamming-Resilient Secure Neighbor Discovery in Mobile Ad Hoc Networks,”Proc.International Conference on Distributed Computing Systems,2011,pp.529-538.
    [241]R.Zhang,Y.C.Zhang,“Wormhole-Resilient Secure Neighbor Discovery in Underwater Acoustic Networks,”IEEE INFOCOM,2010,pp.1-9.
    [242]E.Gelal,G.Jakllari,S.V.Krishnamurthy,“Topology Management in Directional Antenna-Equipped Ad Hoc Networks,”IEEE Transactions on Mobile Computing,vol.8,no.5,2009,pp.590-605.
    [243]R.R.Choudhury,X.Yang,R.Ramanathan,“On designing MAC protocols for wireless networks using directional antennas,”IEEE Transactions on Mobile Computing,vol.5,no.5,2006,pp.477-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700