High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries
  • 作者:Hao ; Zhang ; Huinan ; Guo ; Aiyang ; Li ; Xiaoya ; Chang ; Song ; Liu ; Dun ; Liu ; Yijing ; Wang ; Fang ; Zhang ; Huatang ; Yuan
  • 英文作者:Hao Zhang;Huinan Guo;Aiyang Li;Xiaoya Chang;Song Liu;Dun Liu;Yijing Wang;Fang Zhang;Huatang Yuan;College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University;School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 英文关键词:Carbon-based materials;;Porous structure;;Ultrahigh surface area;;Ag nanoparticle;;Sodium ion battery
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University;School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 出版日期:2019-04-04
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.31
  • 基金:financially supported by MOST (Grant 2016YFA0202500);; NSFC (51471089, 51501072);; MOE (IRT13R30);; 111 Project (B12015)
  • 语种:英文;
  • 页:TRQZ201904020
  • 页数:8
  • CN:04
  • ISSN:10-1287/O6
  • 分类号:167-174
摘要
Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous architectures and enough lattice distance for Na~+insertion.Herein we report a templated strategy to synthesize 3D porous graphene girds(PGGs)consisting of several stacking graphene structure with ultrahigh surface area and hierarchical connected structure by employing Ag nanoparticles(NPs).The Ag NPs will regenerate for decreasing the experimental cost,also in line with principles of green chemistry and environmentally friendly strategy.The PGGs obtain advanced specific capacity of160 m A h g~(-1)at current density of 50 m A h g~(-1).Moreover,112 mA h g~(-1)capacity can be gained at 1 A h g~(-1)during 1000 cycles.Due to their porous architecture,ultrahigh surface area and low amorphous graphited structure,PGGs electrode showed the excellent electrochemical performance in high rate capability.
        Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous architectures and enough lattice distance for Na~+insertion.Herein we report a templated strategy to synthesize 3D porous graphene girds(PGGs)consisting of several stacking graphene structure with ultrahigh surface area and hierarchical connected structure by employing Ag nanoparticles(NPs).The Ag NPs will regenerate for decreasing the experimental cost,also in line with principles of green chemistry and environmentally friendly strategy.The PGGs obtain advanced specific capacity of160 m A h g~(-1)at current density of 50 m A h g~(-1).Moreover,112 mA h g~(-1)capacity can be gained at 1 A h g~(-1)during 1000 cycles.Due to their porous architecture,ultrahigh surface area and low amorphous graphited structure,PGGs electrode showed the excellent electrochemical performance in high rate capability.
引文
[1] J.R. Chow, J. Kopp, P.R. Portney, Science 302(5650)(2003)1528–1534.
    [2] S. Chu, A. Majumdar, Nature 488(7411)(2012)294–303.
    [3] J.B. Goodenough, Acc. Chem. Res. 46(5)(2013)1053–1061.
    [4] C. Xu, L. Li, F. Qiu, C. An, Y. Xu, Y. Wang, Y. Wang, L. Jiao, H. Yuan, J. Energy Chem. 23(3)(2014)397–402.
    [5] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Energy Environ. Sci. 6(8)(2013)2312–2337.
    [6] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, Angew. Chem. Int. Ed. 54(11)(2015)3431–3448.
    [7] X. Xiang, K. Zhang, J. Chen, Adv. Mater. 46(44)(2015)5343–5364.
    [8] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23(8)(2013)947–958.
    [9] H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, J. Mater. Chem. A 3(35)(2015)17899–17913.
    [10] Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Nano Energy 5(2)(2014)60–66.
    [11] Y. Li, H. Yu, Y. Hu, H. Jiang, C. Li, J. Energy Chem. 27(2)(2018)559–564.
    [12] Y. Jiao, D. Han, L. Liu, L. Ji, G. Guo, J. Hu, D. Yang, A. Dong, Angew. Chem. Int.Ed. 127(19)(2015)5819–5823.
    [13] M.-H. Sun, S.-Z. Huang, L.-H. Chen, Y. Li, X.-Y. Yang, Z.-Y. Yuan, B.-L. Su, Chem.Soc. Rev. 45(20)(2016)3479–3563.
    [14] Y. Li, Z.-Y. Fu, B.-L. Su, Adv. Funct. Mater. 22(22)(2012)4634–4667.
    [15] S. Zhang, L. Chen, S. Zhou, D. Zhao, L. Wu, Chem. Mater. 22(11)(2010)3433–3440.
    [16] H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27(47)(2015)7861–7866.
    [17] Y. Matsuo, K. Ueda, J. Power Sources 263(5)(2014)158–162.
    [18] H. Wang, P. Hu, J. Yang, G. Gong, L. Guo, X. Chen, Adv Mater. 27(14)(2015)2348–2354.
    [19] D. Su, S. Dou, G. Wang, Nano Energy 12(2015)88–95.
    [20] S. Wang, J. Tu, Y. Yuan, R. Ma, S. Jiao, Phys. Chem. Chem. Phys. 18(4)(2016)3204–3213.
    [21] W. Sun, X. Rui, D. Zhang, Y. Jiang, Z. Sun, H. Liu, S. Dou, J. Power Sources 309(2016)135–140.
    [22] Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Adv. Energy Mater. 4(8)(2014)1301584.
    [23] M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, ACS Appl. Mater. Interfaces 7(5)(2015)18387–18396.
    [24] Y. Liu, Y. Zhou, J. Zhang, S. Zhang, P. Ren, J. Power Sources 314(2016)1–9.
    [25] M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu, C. Yan, Adv. Funct. Mater.26(28)(2016)5019–5027.
    [26] Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, ACS Nano 7(7)(2013)6378–6386.
    [27] M.S. Islam, C.A.J. Fisher, Chem. Soc. Rev. 43(1)(2014)185–204.
    [28] Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv. Energy Mater. 3(1)(2013)128–133.
    [29] B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.-M. Tarascon, Nat.Commun. 7(2016)10308–10315.
    [30] M.K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park, P.N. Kumta, J. Power Sources225(3)(2013)316–322.
    [31] Z. Niu, L. Liu, L. Zhang, Q. Shao, W. Zhou, X. Chen, S. Xie, Adv. Mater. 26(22)(2014)3681–3687.
    [32] S. Wu, R. Ge, M. Lu, R. Xu, Z. Zhang, Nano Energy 15(2015)379–405.
    [33] A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Rev. 114(14)(2014)7150–7188.
    [34] Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Chem. Commun. 48(86)(2012)10663–10665.
    [35] D.A. Stevens, J.R. Dahn, J. Electro. Soc. 147(12)(2001)1271–1273.
    [36] S.B. Yoon, G.S. Chai, S.K. Kang, J.-S. Yu, K.P. Gierszal, M. Jaroniec, J. Am. Chem.Soc. 127(12)(2005)4188–4189.
    [37] S. Wei, X. Wang, M. Liu, R. Zhang, G. Wang, H. Hu, J. Energy Chem. 27(2)(2018)573–584.
    [38] G. Zou, X. Jia, Z. Huang, S. Li, H. Liao, H. Hou, L. Huang, X. Ji, Electrochim. Acta196(2016)413–421.
    [39] R.R. Gaddam, D. Yang, R. Narayan, K.V.S.N. Raju, N.A. Kumar, X.S. Zhao, Nano Energy 26(2016)346–352.
    [40] X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater. 25(9)(2015)1393–1403.
    [41] Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem.Soc. 135(4)(2013)1524–1530.
    [42] H. Nishihara, T. Kyotani, Adv. Mater. 24(33)(2012)4473–4498.
    [43] S. Mourdikoudis, L.M. Liz-Marzán, Chem. Mater. 25(9)(2013)1465–1476.
    [44] Q. Zhang, J. Xie, J. Yang, J.Y. Lee, ACS Nano 3(3)(2009)139–148.
    [45] S. Guo, X. Zhang, W. Zhu, K. He, D. Su, A.M. Garcia, S.F. Ho, G. Lu, S. Sun, J. Am.Chem. Soc. 136(42)(2014)15026–15033.
    [46] Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 21(9)(2009)1778–1780.
    [47] L.A. Shah, W. Chen, M. Siddiq, J. Hu, A. Dong, D. Yang, Chin. J. Chem. 33(4)(2015)467–472.
    [48] Y. Ma, W. Li, E.C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, Y. Xia, ACS Nano 4(11)(2010)6725–6734.
    [49] J. Yang, J. Yang, J.Y. Ying, ACS Nano 6(11)(2012)9373–9382.
    [50] S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.B.T. Nguyen, R.S. Ruoff, ACS Nano 2(3)(2008)572–578.
    [51] A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Langmuir19(15)(2003)6050–6055.
    [52] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány,Chem. Mater. 18(11)(2006)2740–2749.
    [53] Q. Shi, Y. Cha, Y. Song, J.-I. Lee, C. Zhu, X. Li, M.-K. Song, D. Du, Y. Lin, Nanoscale8(34)(2016)15414–15447.
    [54] K.-L. Hong, L. Qie, R. Zeng, Z.-Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.-J. Fan,W.-X. Zhang, Y.-H. Huang, J. Mater. Chem. A 2(32)(2014)12733–12738.
    [55] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 55(10)(2016)3408–3413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700