下扬子及周边地区深部泊松比结构及深部动力过程约束研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Poisson′s ratio structure beneath the lower Yangtze block and its surrounding region and constraints on the deep dynamic process
  • 作者:张昌榕 ; 张贵宾 ; 江国明 ; 吕庆田 ; 徐峣
  • 英文作者:ZHANG ChangRong;ZHANG GuiBin;JIANG GuoMing;Lü QingTian;XU Yao;School of Geophysics and Information Technology, China University of Geosciences;Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences;
  • 关键词:下扬子地区 ; 非均匀网格 ; 远震层析成像 ; 泊松比 ; 深部动力过程
  • 英文关键词:Lower Yangtze region;;Non-uniform grid;;Teleseismic tomography;;Poisson′s ratio;;Deep dynamic process
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地质大学(北京)地球物理与信息技术学院;中国地质科学院地球物理地球化学勘查研究所;
  • 出版日期:2018-11-15
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金重点项目(41630320);; 国家重点研发计划课题(2016YFC0600201);; “深部探测技术与实验研究”专项项目(SinoProbe-03);; “中国地质调查局专项”(DD20189821)联合资助
  • 语种:中文;
  • 页:DQWX201811009
  • 页数:18
  • CN:11
  • ISSN:11-2074/P
  • 分类号:102-119
摘要
下扬子及周边地区存在着丰富的地质构造和多金属矿产资源,其深部结构和动力学过程已成为地学界研究的热点.为了更好地讨论下扬子及周边地区的深部动力学过程和岩浆活动机制,本文基于均匀网格层析成像方法提出了非均匀网格远震层析成像方法,利用大量的天然地震相对走时残差数据反演获得了下扬子及周边地区深至700 km范围内的三维S波和P波速度结构,并根据纵横波的比值关系计算出泊松比异常.由于S波速度比P波对流体的反应更加敏感,所以泊松比异常反映了物质是否包含流体或者物质的软硬、冷热程度.本研究结果显示:(1)长江中下游成矿带下方的上地幔内存在明显的高泊松比异常,而地幔过渡带内则存在明显的低泊松比异常;(2)大别造山带及其南侧的中扬子地块的上地幔中下部及地幔过渡带内都存在明显低泊松比异常,且呈现东深西浅的空间分布特征.结合已有的地质、地球物理和地球化学等资料,我们认为长江中下游成矿带下方的地幔过渡带内滞留着古太平洋俯冲板块,其上地幔内则赋存着软的上地幔热物质,为深部成矿提供了热量或幔源物质.因此,古太平洋板块的俯冲对长江中下游成矿带的形成发挥了至关重要的作用.
        There are abundant mineral resources in the lower Yangtze block and its surrounding region, the deep dynamic process of the area becomes a focus for many geoscientists. To further study the deep dynamic process in lower Yangtze block and its surrounding region, we have developed a teleseismic non-uniform grid tomography method based on the uniform grid tomography method. We obtained 3-D S-wave and P-wave velocity models down to 700 km depth of the study area with the method. The Poisson′s ratio models were then established according to the ratio between S-wave and P-wave velocity models. Since the S-wave velocity is more sensitive to the fluid than the P-wave velocity, the Poisson′s ratio can reflect whether the substance contains the fluid or the softness and temperature of the substance better. Our tomography results show that:(1) there are low Poisson′s ratio anomalies in the mantle transition zone and high Poisson′s ratio anomalies in the upper mantle beneath the middle-lower Yangtze metallogenic belt;(2) There are obvious lower Poisson′s ratio anomalies within the middle and lower part of the upper mantle and the mantle transition zone beneath the Dabie orogenic belt and the middle Yangtze Craton, and the lower Poisson′s ratio anomalies extend more deeply to the east than to the west.Combining with a large number of geological, geophysical and geochemical results, we illustrate that there are paleo-Pacific slab staying in the mantle transition zone of the middle-lower Yangtze metallogenic belt. The hot mantle materials in the upper mantle right beneath the lower Yangtze metallogenic belt supply the heat and the mantle-derived material for the mineralization. In summary, the subduction of the paleo-Pacific slab played a crucial role in the formation of the metallogenic belt in the middle-lower Yangtze block.
引文
Asamori K, Zhao D P. 2015. Teleseismic shear wave tomography of the Japan subduction zone. Geophysical Journal International, 203(3): 1752-1772.
    Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P, and S, wave tomography. Journal of Geophysical Research: Atmospheres, 105(B5): 11153-11169.
    Hacker B R, Ratschbacher L, Webb L, et al. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364.
    Hacker B R, Ratschbacher L, Liou J G. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. Geological Society, London, Special Publications, 226(1): 157-175.
    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305, doi: 10.1029/2005JB004066.
    Jiang G M, Zhao D P, Zhang G B. 2009. Seismic tomography of the Pacific slab edge under Kamchatka. Tectonophysics, 465(1-4): 190-203.
    Jiang G M, Zhang G B, Xu Y. 2013. A fast method for calculating relative residuals of teleseismic data and its application. Chinese Journal of Geophysics (in Chinese), 55(12): 4097-4105, doi: 10.6038/j.issn.0001-5733.2012.12.022.
    Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 606: 36-47.
    Jiang G M, Zhang G B, Lü Q T, et al. 2014. Deep geodynamics of mineralization beneath the Middle-Lower Reaches of Yangtze River: Evidence from teleseismic tomography. Acta Petrologica Sinica (in Chinese), 30(4): 907-917.
    Jiang G M, Zhang G B, Zhao D P, et al. 2015. Mantle dynamics and Cretaceous magmatism in east-central China: Insight from teleseismic tomograms. Tectonophysics, 664: 256-268
    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429-465.
    Laske G, Masters G, Ma Z, et al. 2012. CRUST1.0: An updated global model of Earth′s crust. Geophys Res Abs, 14 (EGU2012-37431).
    Lebedev S, Nolet G. 2003. Upper mantle beneath Southeast Asia from S velocity tomography. Journal of Geophysical Research: Solid Earth, 108(B1): 2048, doi: 10.1029/2000JB000073.
    Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3-4): 281-295.
    Li C, Chen Y J. 2002. A review on petrologic evidences for mesozoic lithosphere delamination in east Qinling-Dabie mountains. Acta Scientiarum Naturalium Universitatis Pekinensis, 38(3): 431-441.
    Li S G, He Y S, Wang S J. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen—Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chinese Science Bulletin, 58(35): 4411-4417.
    Li Y H, Wu Q J, Zhang R Q, et al. 2009. The lithospheric S-velocity structure of the western Yangtze craton inferred from surface waves inversion. Chinese Journal of Geophysics (in Chinese), 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.
    Ling M X, Wang F Y, Ding X, et al. 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: Geochemical constraints. International Geology Review, 53(5-6): 727-740.
    Liu X C, Jahn B M, Cui J J, et al. 2010. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos, 119(3-4): 211-237.
    Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth and Planetary Science Letters, 313-314: 12-22.
    Ouyang L B, Li H Y, Lü Q T, et al. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region. Earth and Planetary Science Letters, 408: 378-389.
    Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1): 43-71.
    Pan Y M, Dong P. 1999. The lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion-and wall rock-hosted Cu-Fe-Au,Mo,Zn,Pb,Ag deposits. Ore Geology Reviews, 15(4): 177-242.
    Sobolev S V, Zeyen H, Stoll G, et al. 1996. Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth and Planetary Science Letters, 139(1-2): 147-163.
    Wang Q, Zhao Z, Xu J, et al.2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei (delaminated) lower crustal melting and the genesis of porphyry copper deposit. Acta Petrologica Sinica (in Chinese), 20(2): 351-360.
    Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446.
    Wang Q, Wyman D A, Xu J F, et al. 2007a. Early cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.
    Wang Q, Song X D, Ren J Y. Ambient noise surface wave tomography of marginal seas in east Asia. Earth Planet Phys, 2017, 1(1):13-25.
    Wang X L, Zhou J C, Griffin W L, et al. 2007b. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131.
    Wei W, Zhao D P. 2013. The 2008 Iwate-Miyagi earthquake (M7.2) and arc volcanism: Insight from irregular-grid tomography. Earth Science Frontiers, 20(2): 155-171.
    Wu F Y, Lin J Q, Wilde S A, et al. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119.
    Wu F Y, Yang J H, Wilde S A, et al. 2005b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156.
    Wu F Y, Ji W Q, Sun D H, et al. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150: 6-25.
    Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong′an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428.
    Xu H J, Ma C Q, Song Y R, et al. 2012. Early cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction. Lithos, 154: 83-99.
    Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114.
    Xu Y, Lü Q T, Zhang G B, et al. 2015. S-wave velocity structure beneath the Middle-Lower Yangtze River Metallogenic Belt and the constraints on the deep dynamic processes. Chinese Journal of Geophysics (in Chinese), 58(12): 4373-4387, doi: 10.6038/cjg20151204.
    Yuan X C, Hua J R. 2011. 3D lithospheric structure of South China. Geology in China (in Chinese), 38(1): 1-19.
    Zhang H J, Thurber C. 2005. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California. Journal of Geophysical Research: Solid Earth, 110(4): B04303, doi: 10.1029/2004JB003186.
    Zhao D. 2012. Tomography and dynamics of western-pacific subduction zones. Monographs on Environment, Earth and Planets, 1(1): 1-70.
    Zhao D P, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research: Solid Earth, 97(B13): 19909-19928.
    Zhao D P, Hasegawa A, Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. Journal of Geophysical Research: Solid Earth, 99(B11): 22313-22329.
    Zhao D P, Lei J S, Inoue T, et al. 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters, 243(3-4): 681-691.
    Zheng T Y, Duan Y H, Xu W W, et al. A seismic model for crustal structure in North China Craton. Earth Planet Phys, 2017, 1(1):26-34.
    Zheng Y F, Xiao W J, Zhao G C. 2013. Introduction to tectonics of China. Gondwana Research, 23(4): 1189-1206.
    Zhou L Q, Xie J Y, Shen W S, et al. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophysical Journal International, 189(3): 1565-1583.
    Zhou T F, Fan Y, Yuan F, et al. 2008. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance. Science in China Series D: Earth Sciences, 51(10): 1470-1482.
    Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287.
    Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33.
    江国明, 张贵宾, 徐峣. 2013. 远震相对走时数据快速计算方法及应用. 地球物理学报, 55(12): 4097-4105, doi: 10.6038/j.issn.0001-5733.2012.12.022.
    江国明, 张贵宾, 吕庆田等. 2014. 长江中下游地区成矿深部动力学机制: 远震层析成像证据. 岩石学报, 30(4): 907-917.
    李超, 陈衍景. 2002. 东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述. 北京大学学报(自然科学版), 38(3): 431-441.
    李永华, 吴庆举, 张瑞青等. 2009. 用面波方法研究上扬子克拉通壳幔速度结构. 地球物理学报, 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.
    王强, 赵振华, 许继峰,等. 2004. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360.
    徐峣, 吕庆田, 张贵宾等. 2015. 长江中下游成矿带三维S波速度结构及对深部过程的约束. 地球物理学报, 58(12): 4373-4387, doi: 10.6038/cjg20151204.
    袁学诚, 华九如. 2011. 华南岩石圈三维结构. 中国地质, 38(1): 1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700