Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network
  • 作者:Cheng-Lin ; Li ; P.L.Narayana ; N.S.Reddy ; Seong-Woo ; Choi ; Jong-Taek ; Yeom ; Jae-Keun ; Hong ; Chan ; Hee ; Park
  • 英文作者:Cheng-Lin Li;P.L.Narayana;N.S.Reddy;Seong-Woo Choi;Jong-Taek Yeom;Jae-Keun Hong;Chan Hee Park;Advanced Metals Division, Korea Institute of Materials Science;School of Materials Science and Engineering, Gyeongsang National University;
  • 英文关键词:Deep neural networks;;Back propagation;;Processing map;;Recrystallization;;Beta titanium
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Advanced Metals Division, Korea Institute of Materials Science;School of Materials Science and Engineering, Gyeongsang National University;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by grants from the Civil–Military Technology Cooperation Program (16-CM-MA-10) of the Defense Acquisition Program Administration;; from the Core Material Program (10062485) of the Ministry of Trade, Industry and Energy, Republic of Korea
  • 语种:英文;
  • 页:CLKJ201905025
  • 页数:10
  • CN:05
  • ISSN:21-1315/TG
  • 分类号:207-216
摘要
Ti-2 Al-9.2 Mo-2 Fe is a low-cost β titanium alloy with well-balanced strength and ductility, but hot working of this alloy is complex and unfamiliar. Understanding the nonlinear relationships among the strain,strain rate, temperature, and flow stress of this alloy is essential to optimize the hot working process.In this study, a deep neural network(DNN) model was developed to correlate flow stress with a wide range of strains(0.025–0.6), strain rates(0.01–10 s~(-1)) and temperatures(750–1000℃). The model, which was tested with 96 unseen datasets, showed better performance than existing models, with a correlation coefficient of 0.999. The processing map constructed using the DNN model was effective in predicting the microstructural evolution of the alloy. Moreover, it led to the optimization of hot-working conditions to avoid the formation of brittle precipitates(temperatures of 820–1000℃ and strain rates of 0.01–0.1 s~(-1)).
        Ti-2 Al-9.2 Mo-2 Fe is a low-cost β titanium alloy with well-balanced strength and ductility, but hot working of this alloy is complex and unfamiliar. Understanding the nonlinear relationships among the strain,strain rate, temperature, and flow stress of this alloy is essential to optimize the hot working process.In this study, a deep neural network(DNN) model was developed to correlate flow stress with a wide range of strains(0.025–0.6), strain rates(0.01–10 s~(-1)) and temperatures(750–1000℃). The model, which was tested with 96 unseen datasets, showed better performance than existing models, with a correlation coefficient of 0.999. The processing map constructed using the DNN model was effective in predicting the microstructural evolution of the alloy. Moreover, it led to the optimization of hot-working conditions to avoid the formation of brittle precipitates(temperatures of 820–1000℃ and strain rates of 0.01–0.1 s~(-1)).
引文
[1]D.Banerjee,J.C.Williams,Acta Mater.61(2013)844-879.
    [2]R.R.Boyer,R.D.Briggs,J.Mater.Eng.Perform.14(2005)681-685.
    [3]Q.Xue,Y.J.Ma,J.F.Lei,R.Yang,C.Wang,J.Mater.Sci.Technol.34(2018)2507-2514.
    [4]Y.Kosaka,S.P.Fox,K.Faller,S.H.Reichman,J.Mater.Eng.Perform.14(2005)792-798.
    [5]L.Gerd,J.C.Williams,Titanium,Springer-Verlag,Berlin Heidelberg,2007.
    [6]C.L.Li,W.J.Ye,X.J.Mi,S.X.Hui,D.G.Lee,Y.T.Lee,Key Eng.Mater.551(2013)114-117.
    [7]C.L.Li,X.J.Mi,W.J.Ye,S.X.Hui,D.G.Lee,Y.T.Lee,Mater.Sci.Eng.A 645(2015)225-231.
    [8]C.L.Li,X.J.Mi,W.J.Ye,S.X.Hui,D.G.Lee,Y.T.Lee,Mater.Sci.Eng.A 580(2013)250-256.
    [9]T.Furuhara,B.Poorganji,H.Abe,T.Maki,JOM 59(2007)64-67.
    [10]J.Zhang,H.Di,H.Wang,K.Mao,T.Ma,Y.Cao,J.Mater.Sci.47(2012)4000-4011.
    [11]N.G.Jones,R.J.Dashwood,D.Dye,M.Jackson,Metall.Mater.Trans.A 40(2009)1944-1954.
    [12]J.Zhao,J.Zhong,F.Yan,F.Chai,M.Dargusch,J.Alloys Compd.710(2017)616-627.
    [13]K.Hua,X.Xue,H.Kou,J.Fan,B.Tang,J.Li,J.Alloys Compd.615(2014)531-537.
    [14]H.Liang,H.Guo,Y.Ning,X.Peng,C.Qin,Z.Shi,Y.Nan,Mater.Des.63(2014)798-804.
    [15]F.S.Qu,Y.H.Zhou,L.Y.Zhang,Z.H.Wang,J.Zhou,Mater.Des.69(2015)153-162.
    [16]C.Cheng,B.Yu,Z.Chen,J.Liu,Q.Wang,J.Mater.Sci.Technol.34(2018)1859-1866.
    [17]W.H.Johnson,G.R.Cook,A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures,Proc.Seventh Int.Symp.Ballist.(1983)541-547.
    [18]A.S.Khan,R.Liang,Int.J.Plast.15(1999)1089-1109.
    [19]P.S.Follansbee,G.T.Gray,Metall.Trans.A 20(1989)863-874.
    [20]M.J.Kim,H.J.Jeong,J.W.Park,S.T.Hong,H.N.Han,Met.Mater.Int.24(2018)42-50.
    [21]S.Nemat-Nasser,J.B.Isaacs,Acta Mater.45(1997)907-919.
    [22]C.H.Park,S.G.Hong,C.S.Lee,Mater.Sci.Eng.A 528(2011)1154-1161.
    [23]Y.Sun,W.D.Zeng,Y.Q.Zhao,X.M.Zhang,Y.Shu,Y.G.Zhou,Mater.Des.32(2011)1537-1541.
    [24]W.Peng,W.Zeng,Q.Wang,H.Yu,Mater.Des.51(2013)95-104.
    [25]Y.Sun,W.D.Zeng,Y.Q.Zhao,Y.L.Qi,X.Ma,Y.F.Han,Comput.Mater.Sci.48(2010)686-691.
    [26]M.Li,X.Liu,A.Xiong,J.Mater,Process.Technol.121(2002)1-4.
    [27]G.Quan,W.Lv,Y.Mao,Y.Zhang,J.Zhou,Mater.Des.50(2013)51-61.
    [28]J.Schmidhuber,Neural Netw.61(2015)85-117.
    [29]L.Liu,R.C.Chen,Transp.Res.Part C Emerg.Technol.84(2017)74-91.
    [30]X.Yin,C.Park,Y.Li,W.Ye,Y.Zuo,S.Lee,J.Yeom,X.Mi,J.Alloys Compd.693(2017)426-431.
    [31]S.Mandal,A.K.Bhaduri,V.S.Sarma,Metall.Mater.Trans.A 42(2011)1062-1072.
    [32]N.S.Reddy,Y.H.Lee,C.H.Park,C.S.Lee,Mater.Sci.Eng.A 492(2008)276-282.
    [33]L.Li,J.Zhou,J.Duszczyk,J.Mater,Process.Technol.172(2006)372-380.
    [34]S.L.Semiatin,G.D.Lahoti,Metall.Trans.A 12(1981)1705-1717.
    [35]B.Li,Q.Pan,Z.Yin,J.Alloys Compd.584(2014)406-416.
    [36]G.Ji,F.Li,Q.Li,H.Li,Z.Li,Mater.Sci.Eng.A 528(2011)4774-4782.
    [37]H.Y.Li,D.D.Wei,Y.H.Li,X.F.Wang,Mater.Des.35(2012)557-562.
    [38]J.Zhao,H.Ding,W.Zhao,M.Huang,D.Wei,Z.Jiang,Comput.Mater.Sci.92(2014)47-56.
    [39]Z.C.Sun,H.Yang,G.J.Han,X.G.Fan,Mater.Sci.Eng.A 527(2010)3464-3471.
    [40]H.Matsumoto,D.Naito,K.Miyoshi,K.Yamanaka,A.Chiba,Y.Yamabe-Mitarai,Sci.Technol.Adv.Mater.18(2017)893-904.
    [41]K.Tan,J.Li,Z.Guan,J.Yang,J.Shu,Mater.Des.84(2015)204-211.
    [42]H.J.Frost,M.F.Ashby,Deformation-mechanism Maps:the Plasticity and Creep of Metals and Ceramics,Pergamon Press,1982.
    [43]H.Yu,C.Li,Y.Xin,A.Chapuis,X.Huang,Q.Liu,Acta Mater.128(2017)313-326.
    [44]Y.V.R.K.Prasad,T.Seshacharyulu,Int.Mater.Rev.43(1998)243-258.
    [45]Y.V.R.K.Prasad,J.Mater.Eng.Perform.12(2003)638-645.
    [46]Y.V.R.K.Prasad,K.P.Rao,S.Sasidhara,A.S.M.I.Staff,Hot Working Guide:ACompendium of Processing Maps,ASM International,2015.
    [47]H.Matsumoto,M.Kitamura,Y.Li,Y.Koizumi,A.Chiba,Mater.Sci.Eng.A 611(2014)337-344.
    [48]V.V.Balasubrahmanyam,Y.V.R.K.Prasad,Mater.Sci.Eng.A 336(2002)150-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700