Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations
  • 作者:Shanlong ; Li ; Chunyang ; Yu ; Yongfeng ; Zhou
  • 英文作者:Shanlong Li;Chunyang Yu;Yongfeng Zhou;School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University;
  • 英文关键词:alternating-structured polymer;;self-assembly;;dissipative particle dynamics simulations;;phase diagram
  • 中文刊名:JBXG
  • 英文刊名:中国科学:化学(英文版)
  • 机构:School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University;
  • 出版日期:2018-11-27 13:49
  • 出版单位:Science China(Chemistry)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (21893073010, 21404070, 21474062, 51773115, 21774077, 91527304);; the Program for Basic Research of Shanghai Science and Technology Commission (17JC1403400);; Centre for High-Performance Computing, Shanghai Jiao Tong University
  • 语种:英文;
  • 页:JBXG201902012
  • 页数:12
  • CN:02
  • ISSN:11-5839/O6
  • 分类号:82-93
摘要
Alternating-structured polymers(ASPs), like alternating copolymers, regular multiblock copolymers and polycondensates, are very important polymer structures with broad applications in photoelectric materials. However, their self-assembly behaviors,especially the self-assembly of alternating copolymers, have not been clearly studied up to now. Meanwhile, the unique characteristics therein have not been systematically disclosed yet by both experiments and theories. Herein, we have performed a systematic simulation study on the self-assembly of ASPs with two coil alternating segments in solution through dissipative particle dynamics(DPD) simulations. Several morphological phase diagrams were constructed as functions of different impact parameters. Diverse self-assemblies were observed, including spherical micelles, micelle networks, worm-like micelles, disklike micelles, multimicelle aggregates, bicontinuous micelles, vesicles, nanotubes and channelized micelles. Furthermore, a morphological evolutionary roadmap for all these self-assemblies was constructed, along with which the detailed molecular packing models and self-assembly mechanisms for each aggregate were disclosed. The ASPs were found to adopt a folded-chain mechanism in the self-assemblies. Finally, the unique characteristics for the self-assembly of alternating copolymers were revealed especially, including(1) ultra-fine and uniform feature sizes of the aggregates;(2) independence of self-assembled structures from molecular weight and molecular weight distribution;(3) ultra-small unimolecular aggregates. We believe the current work is beneficial for understanding the self-assembly of alternating structured polymers in solution and can serve as a guide for the further experiments.
        Alternating-structured polymers(ASPs), like alternating copolymers, regular multiblock copolymers and polycondensates, are very important polymer structures with broad applications in photoelectric materials. However, their self-assembly behaviors,especially the self-assembly of alternating copolymers, have not been clearly studied up to now. Meanwhile, the unique characteristics therein have not been systematically disclosed yet by both experiments and theories. Herein, we have performed a systematic simulation study on the self-assembly of ASPs with two coil alternating segments in solution through dissipative particle dynamics(DPD) simulations. Several morphological phase diagrams were constructed as functions of different impact parameters. Diverse self-assemblies were observed, including spherical micelles, micelle networks, worm-like micelles, disklike micelles, multimicelle aggregates, bicontinuous micelles, vesicles, nanotubes and channelized micelles. Furthermore, a morphological evolutionary roadmap for all these self-assemblies was constructed, along with which the detailed molecular packing models and self-assembly mechanisms for each aggregate were disclosed. The ASPs were found to adopt a folded-chain mechanism in the self-assemblies. Finally, the unique characteristics for the self-assembly of alternating copolymers were revealed especially, including(1) ultra-fine and uniform feature sizes of the aggregates;(2) independence of self-assembled structures from molecular weight and molecular weight distribution;(3) ultra-small unimolecular aggregates. We believe the current work is beneficial for understanding the self-assembly of alternating structured polymers in solution and can serve as a guide for the further experiments.
引文
1 Mai Y,Eisenberg A.Chem Soc Rev,2012,41:5969-5985
    2 Discher DE,Eisenberg A.Science,2002,297:967-973
    3 Jin H,Huang W,Zhu X,Zhou Y,Yan D.Chem Soc Rev,2012,41:5986-5997
    4 Wang D,Zhao T,Zhu X,Yan D,Wang W.Chem Soc Rev,2015,44:4023-4071
    5 Zhang L,Eisenberg A.Science,1995,268:1728-1731
    6 Zeng QH,Yu AB,Lu GQ.Prog Polymer Sci,2008,33:191-269
    7 Zhang W,Wang X,He L.Chin J Polym Sci,2016,34:420-430
    8 Kosovan P,Kuldova J,Limpouchova Z,Prochazka K,Zhulina EB,Borisov OV.Macromolecules,2009,42:6748-6760
    9 Zhang L,Lin J,Lin S.J Phys Chem B,2007,111:9209-9217
    10 Qi MW,Huang W,Xiao GY,Zhu XY,Gao C,Zhou YF.Acta Polym Sin,2017,2:214-228
    11 Xu FG,Mai YY,Zhou YF.Acta Polym Sin,2017,2:274-282
    12 Li H,Zhang A,Li K,Huang W,Mai Y,Zhou Y,Yan D.Mater Chem Front,2018,2:1040-1045
    13 Zhao Y,Liu YT,Lu ZY,Sun CC.Polymer,2008,49:4899-4909
    14 Choi YK,Bae YH,Kim SW.Macromolecules,1998,31:8766-8774
    15 Ni Y,Chen F,Shi L,Tong G,Wang J,Li H,Yu C,Zhou Y.Chin JChem,2017,35:931-937
    16 Zhang Q,Lin J,Wang L,Xu Z.Prog Polymer Sci,2017,75:1-30
    17 Wu D,Abezgauz L,Danino D,Ho CC,Co CC.Soft Matter,2008,4:1066-1071
    18 Lazzara TD,van de Ven TGM,Whitehead MAT.Macromolecules,2008,41:6747-6751
    19 Fenimore SG,Abezgauz L,Danino D,Ho CC,Co CC.Macromolecules,2009,42:2702-2707
    20 Liu X,Wang Y,Yi C,Feng,Y,Jiang,J,Cui,Z,Chen M.Acta Chim Sinica,2009,5:447-452
    21 Chenglin Y,Yiqun Y,Ye Z,Na L,Xiaoya L,Jing L,Ming J.Langmuir,2012,28:9211-9222
    22 Chen J,Yu C,Shi Z,Yu S,Lu Z,Jiang W,Zhang M,He W,Zhou Y,Yan D.Angew Chem Int Ed,2015,54:3621-3625
    23 Li C,Chen C,Li S,Rasheed T,Huang P,Huang T,Zhang Y,Huang W,Zhou Y.Polym Chem,2017,8:4688-4695
    24 Xu Q,Huang T,Li S,Li K,Li C,Liu Y,Wang Y,Yu C,Zhou Y.Angew Chem Int Ed,2018,57:8043-8047
    25 Zhang YL,Li CL,Rasheed T,Huang P,Zhou YF.Chin J Polym Sci,2018,36:897-904
    26 Du B,Mei A,Yang Y,Zhang Q,Wang Q,Xu J,Fan Z.Polymer,2010,51:3493-3502
    27 Zhou Y,Jiang K,Song Q,Liu S.Langmuir,2007,23:13076-13084
    28 Halperin A.Macromolecules,1991,24:1418-1419
    29 Hugouvieux V,Axelos MAV,Kolb M.Macromolecules,2009,42:392-400
    30 Xu Z,Lin J,Zhang Q,Wang L,Tian X.Polym Chem,2016,7:3783-3811
    31 Li S,Zhang Y,Liu H,Yu C,Zhou Y,Yan D.Langmuir,2017,33:10084-10093
    32 Su Y,Huang J.Chin J Polym Sci,2016,34:838-849
    33 Lin YL,Chang HY,Sheng YJ,Tsao HK.Soft Matter,2013,9:4802-4814
    34 He P,Li X,Kou D,Deng M,Liang H.J Chem Phys,2010,132:204905
    35 He P,Li X,Deng M,Chen T,Liang H.Soft Matter,2010,6:1539-1546
    36 Yang YL,Chen MY,Tsao HK,Sheng YJ.Phys Chem Chem Phys,2018,20:6582-6590
    37 Chang HY,Lin YL,Sheng YJ,Tsao HK.Macromolecules,2013,46:5644-5656
    38 Lin YL,Chang HY,Sheng YJ,Tsao HK.Macromolecules,2012,45:7143-7156
    39 Wang Y,Li B,Zhou Y,Lu Z,Yan D.Soft Matter,2013,9:3293-3304
    40 Yu C,Ma L,Li S,Tan H,Zhou Y,Yan D.Sci Rep,2016,6:26264
    41 Tan H,Wang W,Yu C,Zhou Y,Lu Z,Yan D.Soft Matter,2015,11:8460-8470
    42 Chan ASW,Groves M,Malardier-Jugroot C.Mol Simul,2011,37:701-709
    43 Malardier-Jugroot C,van de Ven TGM,Whitehead MA.Mol Simul,2005,31:173-178
    44 Huang L,Yu C,Huang T,Xu S,Bai Y,Zhou Y.Nanoscale,2016,8:4922-4926
    45 Hoogerbrugge PJ,Koelman JMVA.Europhys Lett,1992,19:155-160
    46 Espa?ol P,Warren P.Europhys Lett,1995,30:191-196
    47 Groot RD,Warren PB.J Chem Phys,1997,107:4423-4435
    48 Anderson JA,Lorenz CD,Travesset A.J Comput Phys,2008,227:5342-5359
    49 Glaser J,Nguyen TD,Anderson JA,Lui P,Spiga F,Millan JA,Morse DC,Glotzer SC.Comput Phys Commun,2015,192:97-107
    50 Humphrey W,Dalke A,Schulten K.J Mol Graphics,1996,14:33-38
    51 Semenov AN,Joanny JF,Khokhlov AR.Macromolecules,1995,28:1066-1075
    52 Xu B,Li L,Yekta A,Masoumi Z,Kanagalingam S,Winnik MA,Zhang K,Macdonald PM,Menchen S.Langmuir,1997,13:2447-2456
    53 Lin Z,Liu S,Mao W,Tian H,Wang N,Zhang N,Tian F,Han L,Feng X,Mai Y.Angew Chem Int Ed,2017,56:7135-7140
    54 Bucknall DG,Anderson HL.Science,2003,302:1904-1905
    55 Barnhill SA,Bell NC,Patterson JP,Olds DP,Gianneschi NC.Macromolecules,2015,48:1152-1161
    56 Agrawal SK,Sanabria-Delong N,Tew GN,Bhatia SR.Macromolecules,2008,41:1774-1784
    57 Yekta A,Xu B,Duhamel J,Adiwidjaja H,Winnik MA.Macromolecules,1995,28:956-966
    58 Zhang J,Lu ZY,Sun ZY.Soft Matter,2013,9:1947-1954
    59 Markin V,Kozlov M,Borovjagin V.Gen Physiol Biophys,1984,3:361-377
    60 Chernomordik L,Kozlov MM,Zimmerberg J.J Membarin Biol,1995,146:1-14
    61 Chernomordik LV,Melikyan GB,Chizmadzhev YA.Biochim Biophysica Acta-Rev Biomembr,1987,906:309-352
    62 Siegel DP.Biophys J,1993,65:2124-2140
    63 Hadjiantoniou NA,Triftaridou AI,Kafouris D,Gradzielski M,Patrickios CS.Macromolecules,2009,42:5492-5498
    64 Greene AC,Zhu J,Pochan DJ,Jia X,Kiick KL.Macromolecules,2011,44:1942-1951
    65 Sommerdijk NAJM,Holder SJ,Hiorns RC,Jones RG,Nolte RJM.Macromolecules,2000,33:8289-8294
    66 Huang L,Lei Z,Huang T,Zhou Y,Bai Y.Nanoscale,2017,9:2145-2149
    67 Srinivas G,Discher DE,Klein ML.Nat Mater,2004,3:638-644
    68 Lynd NA,Hillmyer MA.Macromolecules,2005,38:8803-8810
    69 Bermudez H,Brannan AK,Hammer DA,Bates FS,Discher DE.Macromolecules,2002,35:8203-8208
    70 Zhang L,Eisenberg A.Polym Adv Technol,1998,9:677-699

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700