Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water
  • 作者:Rachita ; Rana ; Sonil ; Nanda ; Aimee ; Maclennan ; Yongfeng ; Hu ; Janusz ; A.Kozinski ; Ajay ; K.Dalai
  • 英文作者:Rachita Rana;Sonil Nanda;Aimee Maclennan;Yongfeng Hu;Janusz A.Kozinski;Ajay K.Dalai;Department of Chemical and Biological Engineering, University of Saskatchewan;Department of Chemical and Biochemical Engineering, University of Western Ontario;Soft X-Ray Micro-Characterization Beamline, Canadian Light Source Inc.;New Model in Technology & Engineering;
  • 英文关键词:Asphaltene;;Petroleum coke;;Subcritical water;;Supercritical water;;Gasification;;Char
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Department of Chemical and Biological Engineering, University of Saskatchewan;Department of Chemical and Biochemical Engineering, University of Western Ontario;Soft X-Ray Micro-Characterization Beamline, Canadian Light Source Inc.;New Model in Technology & Engineering;
  • 出版日期:2019-04-04
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.31
  • 基金:the Natural Sciences and Engineering Research Council of Canada (NSERC);; Canada Research Chair program for funding this bioenergy research
  • 语种:英文;
  • 页:TRQZ201904013
  • 页数:12
  • CN:04
  • ISSN:10-1287/O6
  • 分类号:115-126
摘要
Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures(350–650°C),feed concentrations(15–30 wt%)and reaction times(15–60 min).Nickel-impregnated activated carbon(Ni/AC)was synthesized as a catalyst for enhancing syngas yields at optimal gasification conditions(650°C,15 wt%and 60 min).Structural chemistry of precursors and chars developed at different gasification temperatures was studied using physicochemical and synchrotronbased approaches such as carbon–hydrogen–nitrogen–sulfur(CHNS)analysis,thermogravimetric and differential thermogravimetric analysis(TGA/DTA),scanning electron microscopy(SEM),Fourier-Transform Infrared spectroscopy(FTIR),Raman spectroscopy,X-ray diffraction(XRD)and X-ray absorption spectroscopy(XAS).Asphaltene testified to be a better precursor for catalytic hydrothermal gasification leading to 11.97 mmol/g of total gas yield compared to petroleum coke(8.04 mmol/g).In particular,supercritical water gasification using 5 wt%Ni/AC at 650°C with 15 wt%feed concentration for 60 min resulted in 4.17 and 2.98 mmol/g of H_2from asphaltene and petroleum coke,respectively.Under the same conditions,the respective CH_4yields from catalytic gasification of asphaltene and petroleum coke were 2.54and 1.07 mmol/g.Nonetheless,asphaltene also seemed to an attractive feedstock for the production of highly aromatic chars through hydrothermal gasification.
        Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures(350–650°C),feed concentrations(15–30 wt%)and reaction times(15–60 min).Nickel-impregnated activated carbon(Ni/AC)was synthesized as a catalyst for enhancing syngas yields at optimal gasification conditions(650°C,15 wt%and 60 min).Structural chemistry of precursors and chars developed at different gasification temperatures was studied using physicochemical and synchrotronbased approaches such as carbon–hydrogen–nitrogen–sulfur(CHNS)analysis,thermogravimetric and differential thermogravimetric analysis(TGA/DTA),scanning electron microscopy(SEM),Fourier-Transform Infrared spectroscopy(FTIR),Raman spectroscopy,X-ray diffraction(XRD)and X-ray absorption spectroscopy(XAS).Asphaltene testified to be a better precursor for catalytic hydrothermal gasification leading to 11.97 mmol/g of total gas yield compared to petroleum coke(8.04 mmol/g).In particular,supercritical water gasification using 5 wt%Ni/AC at 650°C with 15 wt%feed concentration for 60 min resulted in 4.17 and 2.98 mmol/g of H_2from asphaltene and petroleum coke,respectively.Under the same conditions,the respective CH_4yields from catalytic gasification of asphaltene and petroleum coke were 2.54and 1.07 mmol/g.Nonetheless,asphaltene also seemed to an attractive feedstock for the production of highly aromatic chars through hydrothermal gasification.
引文
[1] S. Nanda, A.K. Dalai, F. Berruti, J.A. Kozinski, Waste Biomass Valor 7(2016)201–235.
    [2] S. Nanda, S.N. Reddy, S.K. Mitra, J.A. Kozinski, Energy Sci. Eng. 4(2016)99–122.
    [3] I. Austen, A black mound of Canadian oil waste is rising over Detroit,The New York Times. https://www.nytimes.com/2013/05/18/business/energy-environment/mountain-of-petroleum-coke-from-oil-sands-rises-indetroit.html(Accessed on 30.04.2018)
    [4] Y. Xu, J. Wu, T. Dabros, P. Rahimi, J. Kan, Can. J. Chem. Eng. 91(2013)1358–1364.
    [5] R.W. Bryers, Fuel Process. Technol. 44(1995)121–141.
    [6] E. Furimsky, Fuel Process. Technol. 56(1998)263–290.
    [7] N. Berguerand, A. Lyngfelt, Int. J. Greenhouse Gas Control 2(2008)169–179.
    [8] X.L. Zhan, J. Jia, Z.J. Zhou, F.C. Wang, Energy Convers. Manag. 52(2011)1810–1814.
    [9] S. Nagpal, T.K. Sarkar, P.K. Sen, Fuel Process. Technol 86(2005)617–640.
    [10] S.H. Lee, S.J. Yoon, H.W. Ra, Y.I. SonJai, J.C. Hong, L.G. Lee, Energy 35(2010)3239–3244.
    [11] R.B Long, The Concept of Asphaltenes, ACS, Washington DC, 1981, pp. 17–27.
    [12] D. Trommer, F. Noembrini, M. Fasciana, D. Rodriguez, A. Morales, M. Romero,A. Steinfeld, Int. J. Hydrogen Energy 30(2005)605–618.
    [13] A. Z’Graggen, P. Haueter, G. Maag, A. Vidal, M. Romero, A. Steinfeld, Int. J. Hydrogen Energy 32(2007)992–996.
    [14] J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, F. Rubiera, J.J. Pis, F. García-Pe?a,P. Casero, Fuel Process. Technol. 90(2009)926–932.
    [15] K. Jayaraman, I. Gokalp, Appl. Thermal Eng. 80(2015)10–19.
    [16] R. Azargohar, R. Gerspacher, A.K. Dalai, D.-Y. Peng, Fuel Process. Technol 134(2015)310–316.
    [17] V. Kurian, Asphaltene Gasification:Soot Formation and Metal Distribution Ph.D. Thesis, Department of Chemical and Materials Engineering, University of Alberta, 2016.
    [18] A. Hassan, F. Lopez-Linares, N.N. Nassar, L. Carbognani-Arambarri, P. Pereira-Almao, Catal Today 207(2013)112–118.
    [19] N.N. Nassar, C.A. Franco, T. Montoya, F.B. Cortés, A. Hassan, Fuel 156(2015)110–120.
    [20] S.N. Reddy, S. Nanda, J.A. Kozinski, Chem. Eng. Res. Des. 113(2016)17–27.
    [21] S. Nanda, S.N. Reddy, H.N. Hunter, A.K. Dalai, J.A. Kozinski, J. Supercrit. Fluids104(2015)112–121.
    [22] S. Nanda, S.N. Reddy, H.N. Hunter, I.S. Butler, J.A. Kozinski, Ind. Eng. Chem. Res.54(2015)9296–9306.
    [23] T. Yoshida, Y. Oshima, Y. Matsumura, Biomass Bioenergy 26(2004)71–78.
    [24] S. Nanda, A.K. Dalai, J.A. Kozinski, Biomass Bioenergy 95(2016)378–387.
    [25] S. Nanda, M. Gong, H.N. Hunter, A.K. Dalai, I. G?kalp, J.A. Kozinski, Fuel Process.Technol. 168(2017)84–96.
    [26] Z. Fang, S. Xu, I.S. Butler, R.L. Smith Jr., J.A. Kozi′nski, Energy Fuels 18(2004)1257–1265.
    [27] M. Gong, S. Nanda, H.N. Hunter, W. Zhu, A.K. Dalai, J.A. Kozinski, Catal. Today291(2017)13–23.
    [28] M. Gong, S. Nanda, M.J. Romero, W. Zhu, J.A. Kozinski, J. Supercrit Fluids 119(2017)130–138.
    [29] R. Rana, S. Nanda, J.A. Kozinski, A.K. Dalai, J. Environ. Chem. Eng 6(2017)182–189.
    [30] P. Basu, V. Mettanant, Int. J. Chem. React. Eng. 7(2009)1–61.
    [31] P. Kritzer, J. Supercrit. Fluids 29(2004)1–29.
    [32] S.N. Reddy, S. Nanda, A.K. Dalai, J.A. Kozinski, Int. J. Hydrog. Energy 39(2014)6912–6926.
    [33] S. Nanda, R. Rana, Y. Zheng, J.A. Kozinski, A.K. Dalai, Sustain. Energ. Fuels 1(2017)1232–1245.
    [34] D.V.N. Vo, A.A. Adesina, Appl. Catal. A:Gen. 399(2011)221–232.
    [35] Z. Dong, H. Zhang, T. Whidden, Y. Zheng, J. Zhao, Can. J. Chem. Eng 95(2017)1537–1543.
    [36] R. Rana, A.K. Dalai, Y. Hu, J. Adjaye, Fuel Process. Technol. 171(2018)223–231.
    [37] B. Ravel, M. Newville, J. Synchrotron Radiat 12(2005)537–541.
    [38] S. Nanda, J. Isen, A.K. Dalai, J.A. Kozinski, Energy Convers. Manage 110(2016)296–306.
    [39] ASTM D3172-13, Standard Practice for Proximate Analysis of Coal and Coke,ASTM International, West Conshohocken, PA, 2013, doi:10.1520/D3172.
    [40] ASTM D3175-11, Standard Method for Volatile Matter in the Analysis Sample of Coal and Coke, ASTM International, West Conshohocken, PA, 2011, doi:10.1520/D3175-11.
    [41] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, Fuel 94(2012)1–33.
    [42] S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai, Bioenerg. Res.6(2013)663–677.
    [43] J. Bian, M. Xiao, S. Wang, Y. Lu, Y. Meng, Catal. Comm. 10(2009)1142–1145.
    [44] W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song, J. Xu, Appl. Catal. A:Gen 383(2010)73–78.
    [45] P. Mondal, G.S. Dang, M.O. Garg, Fuel Process. Technol. 92(2011)1395–1410.
    [46] L.J. Guo, Y.J. Lu, X.M. Zhang, C.M. Ji, Y. Guan, A.X. Pei, Catal. Today 129(2007)275–286.
    [47] S. Nanda, A.K. Dalai, I. G?kalp, J.A. Kozinski, Waste Manage 52(2016)147–158.
    [48] J.J. Adams, Energy Fuels 28(2014)2831–2856.
    [49] A. Kruse, Biofuel, Bioprod. Bioref 2(2008)415–437.
    [50] I.G. Lee, S.K. Ihm, Ind. Eng. Chem. Res. 48(2009)1435–1442.
    [51] I.G. Lee, A. Nowacka, C.H. Yuan, S.J. Park, J.B. Yang, Int. J. Hydrogen Energy 40(2015)12078–12087.
    [52] T. Minowa, T. Ogi, Catal Today 45(1998)411–416.
    [53] X.H. Hao, L.J. Guo, M. Mao, X.M. Zhang, X.J. Chen, Int. J. Hydrogen Energy 28(2003)55–64.
    [54] M.J. Sheikhdavoodi, M. Almassi, M. Ebrahimi-Nik, A. Kruse, H. Bahrami, J. Energy Inst. 88(2015)450–458.
    [55] S. Nanda, S.N. Reddy, A.K. Dalai, J.A. Kozinski, Int. J. Hydrogen Energy 41(2016)4907–4921.
    [56] P. Azadi, R. Farnood, Int. J. Hydrogen Energy 36(2011)9529–9541.
    [57] H.T. Nguyen, E. Yoda, M. Komiyama, Chem. Eng. Sci. 109(2014)197–203.
    [58] K. Kang, R. Azargohar, A.K. Dalai, H. Wang, Int. J. Energy Res. 41(2017)1835–1846.
    [59] G. Guan, G. Chen, Y. Kasai, E.W.C. Lim, X. Hao, M. Kaewpanha, A. Abuliti,C. Fushimie, A. Tsutsumie, Appl. Catal. B:Environ 115(2012)159–168.
    [60] S.D. Jackson, J. Willis, G.J. Kelly, G.D. McLellan, G. Webb, S. Mather, R.B. Moyes,S. Simpson, P.B. Wells, R. Whyman, Phys. Chem. Chem. Phys. 1(1999)2573–2580.
    [61] C. Courson, L. Udron, D. Swierczynski, C. Petit, A. Kiennemann, Catal. Today 76(2002)75–86.
    [62] D.C. Elliott, L.J. Sealock Jr, E.G. Baker, Ind. Eng. Chem. Res. 32(1993)1542–1548.
    [63] D. Elif, A. Nezihe, Int. J. Hydrogen Energy 41(2016)8073–8083.
    [64] W. Wang, J.L. Gong, Front. Chem. Sci. Eng. 5(2011)2–10.
    [65] P. Kim, A. Johnson, C.W. Edmunds, M. Radosevich, F. Vogt, T.G. Rials, N. Labbé,Energy Fuels 25(2011)4693–4703.
    [66] R.G.S. Ritchie, R.S. Roche, W. Steedman, Fuel 64(1985)391–399.
    [67] R. Azargohar, S. Nanda, B.V.S.K. Rao, A.K. Dalai, Energy Fuels 27(2013)5268–5279.
    [68] R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, R. Sutarto, Fuel 125(2014)90–100.
    [69] P. Mohanty, S. Nanda, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai, J. Anal. Appl.Pyrolysis 104(2013)485–493.
    [70] S.J. Yoon, Y.C. Choi, S.H. Lee, J.G. Lee, Korean J. Chem. Eng. 24(2007)512–517.
    [71] B.K. Wilt, W.T. Welch, J.G. Rankin, Energy Fuels 12(1998)1008–1012.
    [72] V. Calemma, P. Iwanski, M. Nali, R. Scotti, L. Montanari, Energy Fuels 9(1995)225–230.
    [73] J.A. Menéndez, J.J. Pis, R. Alvarez, C. Barriocanal, E. Fuente, M.A. Díez, Energy Fuels 10(1996)1262–1268.
    [74] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jario, R. Saito,Phys. Chem. Chem. Phys. 9(2007)1276–1291.
    [75] X. Li, J.I. Hayashi, C.Z. Li, Fuel 85(2006)1700–1707.
    [76] M. Asadullah, S. Zhang, C.Z. Li, Fuel Process. Technol. 91(2010)877–881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700