一次调频参数对超超临界二次再热机组性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Primary Frequency Regulation Parameters on Performance of a Ultra-supercritical Double Reheat Unit
  • 作者:王珠 ; 韩翔 ; 许立环 ; 赵永亮 ; 种道彤
  • 英文作者:WANG Zhu;HAN Xiang;XU Lihuan;ZHAO Yongliang;CHONG Daotong;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;National Energy Group Suqian Power Generation Co., Ltd.;
  • 关键词:燃煤电厂 ; 二次再热 ; 一次调频 ; 灵活性 ; 调速不等率 ; 动态特性
  • 英文关键词:coal-fired power plant;;double reheat;;primary frequency regulation;;operational flexibility;;speed droop;;dynamic characteristics
  • 中文刊名:ZGDL
  • 英文刊名:Electric Power
  • 机构:西安交通大学动力工程多相流国家重点实验室;国家能源集团宿迁发电有限公司;
  • 出版日期:2019-05-29 14:19
  • 出版单位:中国电力
  • 年:2019
  • 期:v.52;No.606
  • 基金:国家重点研发计划资助项目(2017YFB0602101)~~
  • 语种:中文;
  • 页:ZGDL201905008
  • 页数:9
  • CN:05
  • ISSN:11-3265/TM
  • 分类号:60-68
摘要
二次再热机组流程复杂,惯性较大,其一次调频特性对电厂的运行稳定性、灵活性影响较大。以GSE仿真平台为基础,采用JTopmeret模块和自定义程序相结合的形式,建立了超超临界二次再热汽轮机的仿真模型与一次调频模型,并对此模型进行了精度校验。在此基础上,研究了二次再热机组参与一次调频过程中的热力参数响应特性,分析了负荷阶跃幅度、调速不等率对二次再热机组一次调频特性的影响。结果表明:当机组的负载功率增加时,二次再热机组一次调频控制系统开始动作,在动态调节过程中,实时频率小于50Hz,在达到稳态后,一、二次再热蒸汽的流量、压力变化相对值大于主蒸汽流量、压力变化相对值。在二次再热机组一次调频过程中,频率的动态超调量随负荷阶跃幅度的增大而增大,随调速不等率减小而增大。频率的调节时间随着负荷阶跃幅度的增大或调速不等率的下降而延长。与一次再热机组相比,二次再热机组一次调频控制系统动作较快,但调节过程中最大超调量较大。
        Primary frequency regulation characteristics of double reheat unit have significant impacts on the operation stability and flexibility of power system due to its complicated flow process and large inertia. Based on the GSE simulation platform, the dynamic simulation models of the ultra-supercritical double reheat generation unit and primary frequency regulation were developed and validated by virtue of the combination of JTopmeret module and self-defined program. Then, the response characteristics of the thermal parameters in the double reheat unit during the primary frequency regulation process were studied. The effects of the load step amplitude and the speed droop on the primary frequency regulation characteristics were analyzed. It is discovered from the results that in the primary frequency regulation process of the double reheat unit, with step increase of the load power the real-time frequency will drop rapidly and DEH turbine control system will immediately take measures during dynamic processes, the real time frequency is less 50 Hz. Once the system reaches steady state, the relative change of flow volume and pressure of the primary and secondary reheat steam will be greater than those of the main steam. During the primary frequency regulation of the double reheat units, the increase of load step amplitude or the reduction of the speed droop, will both boost the dynamic overshoot of the frequency,and prolong the time duration for frequency regulation. Compared with single reheat generation units, the primary frequency control systems of double reheat units demonstrate faster response, whereas their maximum overshoot is larger during the regulation process.
引文
[1] CHANG S Y, ZHOU J K, MENG S, et al. Clean coal technologies in China:Current status and future perspectives[J]. Engineering, 2016,2(4):447-459.
    [2] FRANCO A, DIAZ A R. The future challenges for"clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy, 2009, 34(3):348-354.
    [3] ZHOU L Y, XU G, ZHAO S F, et al. Parametric analysis and process optimization of steam cycle in double reheat ultra-supercritical power plants[J]. Applied Thermal Engineering, 2016, 99:652-660.
    [4]王月明,牟春华,姚明宇,等.二次再热技术发展与应用现状[J].热力发电,2017, 46(8):1-10, 15.WANG Yueming, MU Chunhua, YAO Mingyu, et al. Review of the development and application of double-reheat power generation technology[J]. Thermal power generation, 2017,46(8):1-10, 15.
    [5] OLAUSON J, AYOB M N, BWEGKVIST M, et al. Net load variability in Nordic countries with a highly or fully renewable power system[J]. Nature Energy, 2016, 1(12):16175.
    [6] LU X, MCELROY M B, PENG W, et al. Challenges faced by Chinacompared with the US in developing wind power[J]. Nature Energy,2016, 1(6):16061.
    [7]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017, 37(1):1-8.SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE, 2017, 37(1):1-8.
    [8] ALIZADEH M I, MOGHADDAM M P, AMJADY N, et al.Flexibility in future power systems with high renewable penetration:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 57:1186-1193.
    [9]黄卫剑,张曦,陈世和,等.提高火电机组一次调频响应速度[J].中国电力,2011,44(1):73-77.HUANG Weijian, ZHANG Xi, CHEN Shihe, et al. Enhancing response speed of primary frequency regulation in thermal power unit[J]. Electric Power, 2011, 44(1):73-77.
    [10] ZHAO Y L, LIU M, WANG C Y, et al. Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes[J]. Applied Energy, 2018, 228:2375-2386.
    [11] ZHAO Y L, WANG C Y, LIU M, et al. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant:A dynamic simulation[J]. Applied Energy, 2018, 212:1295-1309.
    [12] HU Y, ZENG D L, LIU J Z, et al. Dynamic model for controller design of condensate throttling systems[J]. ISA Transactions, 2015,58:622-628.
    [13] LONG D T, WAND W, YAO C, et al. An experiment-based model of condensate throttling and its utilization in load control of 1000MW power units[J]. Energy, 2017, 133:941-954.
    [14] WANG W, LIU J Z, ZENG D L, et al. Modeling for condensate throttling and its application on the flexible load control of power plants[J]. Applied Thermal Engineering, 2016, 95:303-310.
    [15] WANG W, LI L, LONG D T, et al. Improved boiler-turbine coordinated control of 1000 MW power units by introducing condensate throttling[J]. Journal of Process Control, 2017, 50:11-18.
    [16]冀川,许海雷,李勇.提高二次再热机组一次调频响应的策略[J].电力科技与环保,2018, 34(6):37-39.JI Chuan, XV Hailei, LI Yong. Method for improving primary frequency response of double reheat steam turbine[J]. Electric Power Technology and Environmental Protection, 2018, 34(6):37-39.
    [17]李勇,许海雷.凝结水节流参与的1000 MW二次再热机组一次调频控制方法[J].电力科技与环保,2018, 34(6):34-36.LI Yong, XU Hailei. Condensate throttling frequency control method for 1000 MW double reheat units[J]. Electric Power Technology and Environmental Protection, 2018, 34(6):34-36.
    [18] WU C, GAO L, XIA J, et al. Analysis of effects on primary frequency control and power grid stability of different control logic[C]//ICIEA 2010:Proceedings of the 5th IEEE conference on industrial electronics and applications,Taichuan, 2010.
    [19] WANG C Y, LIU M, ZHAO Y L, et al. Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes[J]. Energy, 2018, 145:734-746.
    [20]吴雪莲,李兆伟,蒋望,等.并网发电机组的一次调频性能评价方法综述[J].电子设计工程,2018, 26(19):171-177.WU Xuelian, LI Zhaowei, JIANG Wang, et al. A review on the evaluation methods of primary frequency modulation performance of grid-connected generator[J]. Electronic Design Engineering, 2018,26(19):171-177.
    [21]王永庆,赵嘉,曹越,等.超临界机组及其一次调频控制系统的辨识与仿真[J].热能动力工程,2018,33(2):111-116.WANG Yongqing, ZHAO Jia, CAO Yue, et al. Identification and simulation of a supercritical unit and its primary frequency modulation and control system[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2):111-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700