基于仿生微圆结构的汽车吸能盒耐撞性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crashworthiness Analysis of Bionic Microcircular Structures for Vehicle Crash Boxes
  • 作者:白中浩 ; 谭雯霄 ; 张林伟 ; 周存文
  • 英文作者:BAI Zhonghao;TAN Wenxiao;ZHANG Linwei;ZHOU Cunwen;The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University;
  • 关键词:仿生 ; 微圆结构 ; 吸能盒 ; 压溃试验 ; 耐撞性
  • 英文关键词:bionic;;microcircular structure;;crash box;;crushing test;;crashworthiness
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:湖南大学汽车车身先进设计制造国家重点实验室;
  • 出版日期:2019-06-03 17:07
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.515
  • 基金:国家自然科学基金资助项目(51621004,51475153);; 深圳市科技创新计划资助项目(JCYJ20160530193357681)
  • 语种:中文;
  • 页:ZGJX201911001
  • 页数:7
  • CN:11
  • ISSN:42-1294/TH
  • 分类号:5-11
摘要
为提高汽车吸能盒的耐撞性,受甲虫鞘翅微观结构启发,研究了一种可应用于吸能盒结构设计的仿生微圆结构。建立了仿生微圆结构的有限元模型,对比分析了仿生微圆结构与传统肋板结构的吸能特性。基于简化超折叠单元理论,推导了仿生微圆结构在轴向载荷下的平均压溃力理论解。研究结果表明:与传统肋板结构相比,仿生微圆结构的能量吸收效率提高了32.20%以上,且理论解与试验结果的吻合度较高。
        Aiming to improve the crashworthiness of the vehicle crash boxes, a kind of bionic microcircular structure(BMS) was studied, which was inspired by the microstructures of the beetle's elytra that might be applied to the structure design of the vehicle crash boxes. The finite element models of BMS were established, and the energy absorption characteristics of BMS and traditional rib structure(TRS) were compared and analyzed. Based on the simplified super folding element(SSFE) theory, the theoretical solutions of the average crushing forces for BMS were derived under axial loads. The research results show that compared with TRS, the energy absorption efficiency of TRS is increased more than 32.20%, and the theoretical solutions agree well with the test results.
引文
[1] 张勇,曾意,徐翔,等.环形梯度多胞结构的多工况耐撞性研究[J].中国机械工程,2018,29(4):485-492.ZHANG Yong,ZENG Yi,XU Xiang,et al.Research on Annular Gradient Multi-cell Structure Crashworthiness under Multi-impacting Cases[J].China Mechanical Engineering,2018,29(4):485-492.
    [2] YAMASHITA M,GOTOH M,SAWAIRI Y.Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-sections:Numerical Simulation and Test[J].Journal of Materials Processing Technology,2003,140(1/3):59-64.
    [3] ABRAMOWICZ W.Thin-walled Structures as Impact Energy Absorbers[J].Thin-Walled Structures,2003,41(2/3):91-107.
    [4] LANGSETH M,HOPPERSTAD O S.Static and Dynamic Axial Crushing of Square Thin-walled Aluminium Extrusions[J].International Journal of Impact Engineering,1996,18(7/8):949-968.
    [5] ZHANG L,BAI Z,BAI F.Crashworthiness Design for Bio-inspired Multi-cell Tubes with Quadrilateral,Hexagonal and Octagonal Sections[J].Thin-walled Structures,2018,122:42-51.
    [6] ZOU X,GAO G,DONG H,et al.Crashworthiness Analysis and Structural Optimisation of Multi-cell Square Tubes under Axial and Oblique Loads[J].International Journal of Crashworthiness,2017,22(2):129-147.
    [7] QIU N,GAO Y,FANG J,et al.Crashworthiness Analysis and Design of Multi-cell Hexagonal Columns under Multiple Loading Cases[J].Finite Elements in Analysis and Design,2015,104:89-101.
    [8] CHEN S,YU H,FANG J.A Novel Multi-cell Tubal Structure with Circular Corners for Crashworthiness[J].Thin-Walled Structures,2018,122:329-343.
    [9] TRAN T N,HOU S,HAN X,et al.Theoretical Prediction and Crashworthiness Optimization of Multi-cell Triangular Tubes[J].Thin-Walled Structures,2014,82:183-195.
    [10] ZHANG X,ZHANG H.Energy Absorption of Multi-cell Stub Columns under Axial Compression[J].Thin-Walled Structures,2013,68:156-163.
    [11] CHEN W,WIERZBICKI T.Relative Merits of Single-cell,Multi-cell and Foam-filled Thin-walled Structures in Energy Absorption[J].Thin-Walled Structures,2001,39(4):287-306.
    [12] ZHANG X,CHENG G,ZHANG H.Theoretical Prediction and Numerical Simulation of Multi-cell Square Thin-walled Structures[J].Thin-Walled Structures,2006,44(11):1185-1191.
    [13] QIU N,GAO Y,FANG J,et al.Theoretical Prediction and Optimization of Multi-cell Hexagonal Tubes under Axial Crashing[J].Thin-Walled Structures,2016,102:111-121.
    [14] YIN H,WEN G,BAI Z,et al.Theoretical Prediction and Crashworthiness Optimization of Multi-cell Polygonal Tubes[J].Journal of Sandwich Structures & Materials,2017:1099636217737330.
    [15] ZOU M,XU S,WEI C,et al.A Bionic Method for the Crashworthiness Design of Thin-walled Structures Inspired by Bamboo[J].Thin-walled Structures,2016,101:222-230.
    [16] CHEN J,GU C,GUO S,et al.Integrated Honeycomb Technology Motivated by the Structure of Beetle Forewings[J].Materials Science and Engineering:C,2012,32(7):1813-1817.
    [17] 陈亚枫,白中浩.泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析[J].振动与冲击,2017,36(6):18-26.CHEN Yafeng,BAI Zhonghao.Crashworthiness Analysis of Foam-filled Single and Bitubal Polygonal Tapered Thin-walled Tubes under Oblique Impact Loading[J].Journal of Vibration and Shock,2017,36(6):18-26.
    [18] XIE S,YANG W,WANG N,et al.Crashworthiness Analysis of Multi-cell Square Tubes under Axial Loads[J].International Journal of Mechanical Sciences,2017,121:106-118.
    [19] BAI Z,GUO H,JIANG B,et al.A Study on the Mean Crushing Strength of Hexagonal Multi-cell Thin-walled Structures[J].Thin-Walled Structures,2014,80:38-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700