Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation
  • 作者:Guangchun ; Song ; Yuxing ; Li ; Wuchang ; Wang ; Kai ; Jiang ; Zhengzhuo ; Shi ; Shupeng ; Yao
  • 英文作者:Guangchun Song;Yuxing Li;Wuchang Wang;Kai Jiang;Zhengzhuo Shi;Shupeng Yao;Shandong Key Laboratory of Oil-Gas Storage and Transportation Safety,College of Pipeline and Civil Engineering,China University of Petroleum;
  • 英文关键词:Hydrate;;Agglomeration;;Flow behavior;;Dynamic model;;Numerical simulation;;Population balance
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Shandong Key Laboratory of Oil-Gas Storage and Transportation Safety,College of Pipeline and Civil Engineering,China University of Petroleum;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:Supported by Shandong Provincial Natural Science Foundation,China(ZR2017MEE057);; the Fundamental Research Funds for the Central Universities(14CX02207A,17CX05006,17CX06017);; the Graduate Innovation Project of China University of Petroleum(East China)(YCX2017062)
  • 语种:英文;
  • 页:ZHGC201901004
  • 页数:12
  • CN:01
  • ISSN:11-3270/TQ
  • 分类号:40-51
摘要
Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed.
        Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed.
引文
[1]E.D.Sloan,Fundamental principles and applications of natural gas hydrates,Nat.Publ.Group 426(6964)(2003)353-359.
    [2]E.D.Sloan,C.A.Koh,A.K.Sum,Natural Gas Hydrates in Flow Assurance,Gulf Professional Publishing(Elsevier),Oxford,U.K.,2010
    [3]E.G.Hammerschmidt,Formation of gas hydrates in natural gas transmission lines,Ind.Eng.Chem.26(8)(1934)851-855.
    [4]E.D.Sloan,Clathrate Hydrate of Natural Gases,second ed.Marcel Dekker,New York,1998 Cap.2455-464.
    [5]Y.H.Sohn,J.Kim,K.Shin,D.Chang,Y.Seo,Z.Aman,E.F.May,Hydrate plug formation risk with varying watercut and inhibitor concentrations,Chem.Eng.Sci.126(2015)711-718.
    [6]X.Li,C.Chen,Y.Chen,Y.Li,H.Li,Kinetics of methane clathrate hydrate formation in water-in-oil emulsion,Energy Fuel 29(4)(2015)2277-2288.
    [7]E.Jassim,M.A.Abdi,Y.Muzychka,A new approach to investigate hydrate deposition in gas-dominated flowlines,J.Nat.Gas Sci.Eng.2(2010)163-177.
    [8]E.Kim,S.Lee,D.L.Ju,Y.W.Seo,Influences of large molecular alcohols on gas hydrates and their potential role in gas storage and CO2sequestration,Chem.Eng.J.267(2015)117-123.
    [9]S.V.Joshi,G.A.Grasso,P.G.Lafond,I.Rao,E.Webb,L.E.Zerpa,E.D.Sloan,C.A.Koh,A.K.Sum,Experimental flowloop investigations of gas hydrate formation in high water cut systems,Chem.Eng.Sci.97(2013)198-209.
    [10]M.W.Sun,A.Firoozabadi,G.J.Chen,C.Y.Sun,Hydrate size measurements in antiagglomeration at high watercut by new chemical formulation,Energy Fuel 29(2015)2901-2905.
    [11]M.A.Kelland,History of the development of low dosage hydrate inhibitors,Energy Fuel 20(2006)825-847.
    [12]L.D.Villano,M.A.Kelland,An investigation into the laboratory method for the evaluation of the performance of kinetic hydrate inhibitors using superheated gas hydrates,Chem.Eng.Sci.66(2011)1973-1985.
    [13]X.Zhao,Z.S.Qiu,W.Huang,Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during deepwater drilling,J.Nat.Gas Sci.Eng.22(2015)270-278.
    [14]G.C.Song,Y.X.Li,W.C.Wang,K.Jiang,X.Ye,P.F.Zhao,Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop,Chem.Eng.Sci.158(2017)480-489.
    [15]P.Chen,W.F.Liu,Y.X.Li,W.C.Wang,H.H.Liu,Q.D.Zhang,Numerical simulation of hydrate slurry flow behavior,Oil Gas Storage Transp.32(2)(2014)160-164(in Chinese).
    [16]A.Cameirao,A.Fezoua,Y.Ouabbas,J.M.Herri,M.Darbouret,A.Sinquin,P.Glenat,Agglomeration of gas hydrate in a water-in-oil emulsion:experimental and modeling studies,Proceedings of the 7th International Conference on Gas Hydrates,Edinburgh,United Kingdom,2011.
    [17]L.E.Dieker,Z.M.Aman,N.C.George,A.K.Sum,E.D.Sloan,C.A.Koh,Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications,Energy Fuel 23(2009)5966-5971.
    [18]K.Muhle,Flock stability in laminar and turbulent flow,Coagulation and Flocculation:Theory and Applications,Marcel Dekker,New York,U.S.A.,1996
    [19]R.Camargo,T.Palermo,Rheological properties of hydrate suspensions in an asphaltenic crude oil,Proceedings of the 4th International Conference on Gas Hydrates,Yokohama,Japan,2002.
    [20]W.C.Wang,Y.X.Li,H.H.Liu,P.F.Zhao,Study of agglomeration characteristics of hydrate particles in oil/gas pipelines,Adv.Mech.Eng.7(1)(2014)457050.
    [21]E.Colombel,P.Gateau,L.Barre,F.Gruy,T.Palermo,Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions,Oil Gas Sci.Technol.64(5)(2009)629-636.
    [22]A.Fidel-Dufour,F.Gruy,J.M.Herri,Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing,Chem.Eng.Sci.61(2)(2006)505-515.
    [23]B.V.Balakin,A.C.Hoffmann,P.Kosinski,Population balance model for nucleation,growth,aggregation,and breakage of hydrate particles in turbulent flow,AICHE J.56(8)(2010)2052-2062.
    [24]P.Doron,D.Barnea,Pressure drop and limit deposit velocity for solid-liquid flow in pipes,Chem.Eng.Sci.50(10)(1995)1595-1604.
    [25]R.T.Zhou,J.H.Chen,N.Yang,J.H.Li,A.Fernandez,P.Ricoux,Modeling of complex liquid-solid flow of particle swelling in slurry loop reactors,Chem.Eng.Sci.176(2018)476-490.
    [26]E.D.Fatnes,Numerical simulations of the flow and plugging behavior of hydrate particles,PhD Thesis,University of Bergen,Bergen,2010.
    [27]B.V.Balakin,A.C.Hoffmann,P.Kosinski,Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow,Chem.Eng.Sci.66(4)(2011)755-765.
    [28]B.V.Balakin,S.Lo,P.Kosinski,A.C.Hoffmann,Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique,Chem.Eng.Sci.153(2016)45-57.
    [29]H.M.Hulburt,S.Katz,Some problems in particle technology:a statistical mechanical formulation,Chem.Eng.Sci.19(8)(1964)555-574.
    [30]N.Q.X.Yang,A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors,Chem.Eng.Sci.170(2017)241-250.
    [31]D.Xu,Z.Q.Liu,L.L.Cai,Y.F.Tang,Y.X.Xu,A.X.Xu,A CFD-PBM approach for modeling ice slurry flow in horizontal pipes,Chem.Eng.Sci.176(2018)546-559.
    [32]D.Ramkrishna,Population Balances:Theory and Applications to Particulate Systems in Engineering,Academic Press,London,2000.
    [33]C.J.Meyer,D.A.Deglon,Particle collision modeling-A review,Miner.Eng.24(2011)719-730.
    [34]M.V.Smoluchowski,Versuch einer mathematischen Theorie der Koagulationskinetik kol-loider Losungen,Ann.Phys.270(5)(1917)222-240.
    [35]T.R.Camp,P.C.Stein,Velocity gradients and internal work in fluid motion,J.Boston Soc.Civ.Eng.30(4)(1943)219-237.
    [36]P.G.Saffman,J.S.Turner,On the collision of drops in turbulent clouds,J.Fluid Mech.1(1)(1956)16-30.
    [37]J.Abrahamson,Collision rates of small particles in a vigorously turbulent fluid,Chem.Eng.Sci.30(11)(1975)1371-1379.
    [38]G.A.Grasso,Investigation of hydrate formation and transportability in multiphase flow systems,PhD Thesis,Colorado School of Mines,2015.
    [39]X.Y.Li,B.E.Logan,Collision frequencies between fractal aggregates and small particles in a turbulent sheared fluid,Environ.Sci.Technol.31(1997)1237-1242.
    [40]T.G.M.V.D.Ven,S.G.Mason,The microrheology of colloidal dispersions VII.Orthokinetic doublet formation of spheres,Colloid Polym.Sci.255(5)(1977)468-479.
    [41]M.R.Anklam,J.D.York,L.Helmerich,A.Firoozabadi,Effects of antiagglomerants on the interactions between hydrate particles,AICHE J.54(2)(2008)565-574.
    [42]J.W.Nicholas,L.E.Dieker,L.Nuebling,B.Horn,H.He,C.A.Koh,E.D.Sloan,Proceedings of the 6th International Conference on Gas Hydrates,Vancouver,Canada,2008.
    [43]J.A.Boxall,C.A.Koh,E.D.Sloan,A.K.Sum,D.T.Wu,Droplet size scaling of water-in-oil emulsions under turbulent flow,Langmuir 28(2012)104-110.
    [44]T.Serra,X.Casamitjana,Modelling the aggregation and break-up of fractal aggregates in a shear flow,Flow Turbul.Combust.59(2)(1997)255-268.
    [45]F.Maggi,Flocculation dynamics of cohesive sediment,PhD Thesis,Delft University of Technology,Delft,2005.
    [46]J.J.Zhang,X.Y.Li,Modeling particle-size distribution dynamics in a flocculation system,AICHE J.49(7)(2003)1870-1882.
    [47]B.V.Balakin,H.Pedersen,Z.Kilinc,A.C.Hoffmann,P.Kosinski,S.Hoiland,Turbulent flow of freon R11 hydrate slurry,J.Pet.Sci.Eng.70(3-4)(2010)177-182.
    [48]J.Ding,D.Gidaspow,A bubbling fluidization model using kinetic theory of granular flow,AICHE J.36(4)(1990)523-538.
    [49]W.Pabst,Fundamental considerations on suspension rheology,Proc.R.Soc.Lond.AMath.Phys.Eng.Sci.48(1)(2004)6-13.
    [50]T.Kimura,M.Nakamura,Time dependence of rheological properties and particle aggregation structure of fine particles in a slurry,J.Res.Assoc.Powder Technol.Jpn 27(2010)597-602.
    [51]J.C.Cheng,C.Yang,Z.S.Mao,CFD-PBE simulation of premixed continuous precipitation incorporating nucleation,growth and aggregation in a stirred tank with multiclass method,Chem.Eng.Sci.68(2012)469-480.
    [52]M.A.Clarke,P.R.Bishnoi,Determination of the intrinsic rate constant and activation energy of CO2gas hydrate decomposition using in-situ particle size analysis,Chem.Eng.Sci.59(14)(2004)2983-2993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700