Woody species Rhus chinensis Mill. seedlings tolerance to Pb:Physiological and biochemical response
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Woody species Rhus chinensis Mill. seedlings tolerance to Pb:Physiological and biochemical response
  • 作者:Xiang ; Shi ; Shufeng ; Wang ; Dongxue ; Wang ; Haijing ; Sun ; Yitai ; Chen ; Jianfeng ; Liu ; Zeping ; Jiang
  • 英文作者:Xiang Shi;Shufeng Wang;Dongxue Wang;Haijing Sun;Yitai Chen;Jianfeng Liu;Zeping Jiang;Research Institute of Subtropical Forestry,Key Laboratory of Tree Breeding of Zhejiang Province,Chinese Academy of Forestry;Research Institute of Forestry,Chinese Academy of Forestry;Forestry College of Inner Mongolia Agricultural University;
  • 英文关键词:Lead;;Tolerance;;Subcellular distribution;;Chemical form;;Low molecular weight organic acids
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Research Institute of Subtropical Forestry,Key Laboratory of Tree Breeding of Zhejiang Province,Chinese Academy of Forestry;Research Institute of Forestry,Chinese Academy of Forestry;Forestry College of Inner Mongolia Agricultural University;
  • 出版日期:2019-03-08
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.78
  • 基金:supported by the National Natural Science Funds of China (No. 31300509);; the special funds from the Central Scientific Research Institute of Public Welfare (No.CAFYBB2014QB016);; the Natural Science Funds of Beijing (No. 8152032)
  • 语种:英文;
  • 页:HJKB201904006
  • 页数:11
  • CN:04
  • ISSN:11-2629/X
  • 分类号:65-75
摘要
Screening potential plant species is a crucial consideration in phytoremediation technology.Our previous study demonstrated that Rhus chinensis Mill. seedlings had potentials for phytoremediation of Pb contaminated soil. However, its bioaccumulation and tolerance characteristics remain unclear. Seedling growth, LMWOAs secreted by roots, Pb subcellular distribution and chemical forms, and mineral elements in R. chinensis tissues were evaluated under different Pb concentrations(0, 25, 50, 100, 200 and 400 mg/L) in culture solution at14 days after planting. R. chinensis did not show visual symptoms of Pb toxicity under lower Pb treatments; however, Pb significantly declined the growth of seedlings under higher Pb treatments. Higher Pb stress also decreased the concentrations of nitrogen in leaves, but increased the concentrations of P and K in roots. Pb stress also decreased Mn concentrations in leaves. A great quantity of Pb was uptake and mostly retained in R. chinensis roots.Nonetheless, R. chinensis can still concentrate 459.3 and 1102.7 mg/kg Pb in leaves and stems,respectively. Most of Pb in R. chinensis tissues was stored in the cell wall with HAc-, HCl-, and NaC l-extractable form. LMWOAs secreted by R. chinensis roots showed a strong positive correlation with Pb concentrations in all plant tissues and with P in roots. Our results suggested that Pb deposited in the cell wall and integration with phosphate or oxalate might be responsible for the tolerance of R. chinensis under Pb stress in short period.
        Screening potential plant species is a crucial consideration in phytoremediation technology.Our previous study demonstrated that Rhus chinensis Mill. seedlings had potentials for phytoremediation of Pb contaminated soil. However, its bioaccumulation and tolerance characteristics remain unclear. Seedling growth, LMWOAs secreted by roots, Pb subcellular distribution and chemical forms, and mineral elements in R. chinensis tissues were evaluated under different Pb concentrations(0, 25, 50, 100, 200 and 400 mg/L) in culture solution at14 days after planting. R. chinensis did not show visual symptoms of Pb toxicity under lower Pb treatments; however, Pb significantly declined the growth of seedlings under higher Pb treatments. Higher Pb stress also decreased the concentrations of nitrogen in leaves, but increased the concentrations of P and K in roots. Pb stress also decreased Mn concentrations in leaves. A great quantity of Pb was uptake and mostly retained in R. chinensis roots.Nonetheless, R. chinensis can still concentrate 459.3 and 1102.7 mg/kg Pb in leaves and stems,respectively. Most of Pb in R. chinensis tissues was stored in the cell wall with HAc-, HCl-, and NaC l-extractable form. LMWOAs secreted by R. chinensis roots showed a strong positive correlation with Pb concentrations in all plant tissues and with P in roots. Our results suggested that Pb deposited in the cell wall and integration with phosphate or oxalate might be responsible for the tolerance of R. chinensis under Pb stress in short period.
引文
Baccio,D.D.,Castagna,A.,Tognetti,R.,Ranieri,A.,Sebastiani,L.,2014.Early responses to cadmium of two poplar clones that differ in stress tolerance.J.Plant Physiol.171,1693-1705.
    Bhargava,A.,Carmona,F.F.,Bhargava,M.,Srivastava,S.,2012.Approaches for enhanced phytoextraction of heavy metals.J.Environ.Manag.105,103-120.
    Bovenkamp,G.L.,Prange,A.,Schumacher,W.,Ham,K.,Smith,A.P.,Hormes,J.,2013.Lead uptake in diverse plant families:a study applying X-ray absorption near edge spectroscopy.Environ.Sci.Technol.47,4375-4382.
    Brunner,I.,Luster,J.,Günthardt-Goerg,M.S.,Frey,B.,2008.Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil.Environ.Pollut.152,559-568.
    Chen,J.R.,Shafi,M.,Wang,Y.,Wu,J.S.,Ye,Z.Q.,Liu,C.,et al.,2016.Organic acid compounds in root exudation of Moso Bamboo(Phyllostachys pubescens)and its bioactivity as affected by heavy metals.Environ.Sci.Pollut.Res.23,20977-20984.
    Cheng,S.F.,Huang,C.Y.,Lin,Y.C.,Lin,S.C.,Chen,K.L.,2015.Phytoremediation of lead using corn in contaminated agricultural land-an in situ study and benefit assessment.Ecotoxicol.Environ.Saf.111,72-77.
    Chiang,P.N.,Chiu,C.Y.,Wang,M.K.,Chen,B.T.,2011.Lowmolecular-weight organic acids exuded by Millet(Setaria italica(L.)Beauv.)roots and their effect on the remediation of cadmium-contaminated soil.Soil Sci.176,33-38.
    Dao,L.H.,Beardall,J.,2016.Effects of lead on growth,photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.Chemosphere 147,420-429.
    de Souza,S.C.R.,de Andrade,S.A.L.,de Souza,L.A.,Schiavinato,M.A.,2012.Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage.J.Environ.Manag.110,299-307.
    Deng,H.,Ye,Z.H.,Wong,M.H.,2004.Accumulation of lead,zinc,copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China.Environ.Pollut.132,29-40.
    di Toppi,L.S.,Gabbrielli,R.,1999.Response to cadmium in higher plants.Environ.Exp.Bot.41,105-130.
    Dresler,S.,Hanaka,A.,Bednarek,W.,Maksymiec,W.,2014.Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper.Acta Physiol.Plant.36,1565-1575.
    Gupta,D.K.,Huang,H.G.,Corpas,F.J.,2013.Lead tolerance in plants:strategies for phytoremediation.Environ.Sci.Pollut.Res.20,2150-2161.
    Han,Y.L.,Zhang,L.L.,Yang,Y.H.,Yuan,H.Y.,Zhao,J.Z.,Gu,J.G.,et al.,2016.Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials.Environ.Pollut.214,510-516.
    He,J.L.,Qin,J.J.,Long,L.Y.,Ma,Y.L.,Li,H.,Li,K.,et al.,2011.Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus×canescens.Physiol.Plant.143,50-63.
    Hettiarachchi,G.M.,Pierzynski,G.M.,2010.Soil lead bioavailability and in situ remediation of lead-contaminated soils:a review.Environ.Prog.Sustain.Energy 23,78-93.
    Houben,D.,Evrard,L.,Sonnet,P.,2013.Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd,Pb and Zn and the biomass production of rapeseed(Brassica napus L.).Biomass Bioenergy 57,196-204.
    Islam,E.,Yang,X.E.,Li,T.Q.,Liu,D.,Jin,X.F.,Meng,F.H.,2007.Effect of Pb toxicity on root morphology,physiology and ultrastructure in the two ecotypes of Elsholtzia argyi.J.Hazard.Mater.147,806-816.
    Israr,M.,Jewell,A.,Kumar,D.,Sahi,S.V.,2011.Interactive effects of lead,copper,nickel and zinc on growth,metal uptake and antioxidative metabolism of Sesbania drummondii.J.Hazard.Mater.186,1520-1526.
    Jiang,G.,Liu,Y.,Huang,L.,Fu,Q.,Deng,Y.,Hu,H.,2012.Mechanism of lead immobilization by oxalic acid-activated phosphate rocks.J.Environ.Sci.24,919-925.
    Khan,I.,Iqbal,M.,Ashraf,M.Y.,Ashraf,M.A.,Ali,S.,2016.Organic chelants-mediated enhanced lead(Pb)uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach(Spinacea oleracea L.).J.Hazard.Mater.317,352-361.
    Kim,J.O.,Lee,Y.W.,Chung,J.,2013.The role of organic acids in the mobilization of heavy metals from soil.KSCE J.Civ.Eng.17,1596-1602.
    Kopittke,P.M.,Asher,C.J.,Blamey,F.P.C.,Auchterlonie,G.J.,Guo,Y.N.,Menzies,N.W.,2008.Localization and chemical speciation of Pb in roots of signal grass(Brachiaria decumbens)and Rhodes grass(Chloris gayana).Environ.Sci.Technol.42,4595-4599.
    Li,Y.,Zhou,C.F.,Huang,M.Y.,Luo,J.W.,Hou,X.L.,Wu,P.F.,et al.,2016.Lead tolerance mechanism in Conyza canadensis:subcellular distribution,ultrastructure,antioxidative defense system,and phytochelatins.J.Plant Res.129,251-262.
    Madejón,P.,Murillo,J.M.,Mara?ón,T.,Cabrera,F.,Soriano,M.A.,2003.Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.Sci.Total Environ.307,239-257.
    Magdziak,Z.,Kozlowska,M.,Kaczmarek,Z.,Mleczek,M.,Chadzinikolau,T.,Drzewiecka,K.,et al.,2011.Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis.II.Secretion of low molecular weight organic acids to the rhizosphere.Ecotoxicol.Environ.Saf.74,33-40.
    Mahdavian,K.,Ghaderian,S.M.,Schat,H.,2016.Pb accumulation,Pb tolerance,antioxidants,thiols,and organic acids in metallicolous and non-metallicolous Peganum harmala L.under Pb exposure.Environ.Exp.Bot.126,21-31.
    Malar,S.,Manikandan,R.,Favas,P.J.C.,Sahi,S.V.,Venkatachalam,P.,2014a.Effect of lead on phytotoxicity,growth,biochemical alterations and its role on genomic template stability in Sesbania grandiflora:a potential plant for phytoremediation.Ecotoxicol.Environ.Saf.108,249-257.
    Malar,S.,Vikram,S.S.,Favas,P.J.,Perumal,V.,2014b.Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths[Eichhornia crassipes(Mart.)].Bot.Stud.55,54.
    Mendez,M.O.,Maier,R.M.,2008.Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology.Environ.Health Perspect.116,278-283.
    Metwally,A.,Safronova,V.I.,Belimov,A.A.,Dietz,K.J.,2005.Genotypic variation of the response to cadmium toxicity in Pisum sativum L.J.Exp.Bot.56,167-178.
    Mwamba,T.M.,Li,L.,Gill,R.A.,Islam,F.,Nawaz,A.,Ali,B.,et al.,2016.Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus.Ecotoxicol.Environ.Saf.134,239-249.
    Parra,A.,Zornoza,R.,Conesa,E.,Gómez-López,M.D.,Faz,A.,2014.Seedling emergence,growth and trace elements tolerance and accumulation by Lamiaceae species in a mine soil.Chemosphere 113,132-140.
    Pottier,M.,de La Torre,V.S.G.,Victor,C.,David,L.C.,Chalot,M.,Thomine,S.,2015.Genotypic variations in the dynamics of metal concentrations in poplar leaves:a field study with a perspective on phytoremediation.Environ.Pollut.199,73-82.
    Pulford,I.D.,Watson,C.,2004.Phytoremediation of heavy metalcontaminated land by trees-a review.Environ.Int.29,529-540.
    Qiao,X.Q.,Zheng,Z.Z.,Zhang,L.F.,Wang,J.H.,Shi,G.X.,Xu,X.Y.,2015.Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.:subcellular distribution,polyamines and proline.Chemosphere 120,179-187.
    Roosta,H.R.,Estaji,A.,Niknam,F.,2018.Effect of iron,zinc and manganese shortage-induced change on photosynthetic pigments,some osmoregulators and chlorophyll fluorescence parameters in lettuce.Photosynthetica 56,606-615.
    Shakoor,M.B.,Ali,S.,Hameed,A.,Farid,M.,Hussain,S.,Yasmeen,T.,et al.,2014.Citric acid improves lead(Pb)phytoextraction in Brassica napus L.by mitigating Pb-induced morphological and biochemical damages.Ecotoxicol.Environ.Saf.109,38-47.
    Sharma,P.,Dubey,R.S.,2005.Lead toxicity in plants.Braz.J.Plant Physiol.17,35-52.
    Shi,X.,Chen,Y.T.,Wang,S.F.,Pan,H.W.,Sun,H.J.,Liu,C.X.,et al.,2016.Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.Int.J.Phytoremediation 18,1155-1163.
    Shukla,O.P.,Juwarkar,A.A.,Singh,S.K.,Khan,S.,Rai,U.N.,2011.Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.Waste Manag.31,115-123.
    Sol?s-Dominguez,F.A.,White,S.A.,Hutter,T.B.,Amistadi,M.K.,Root,R.A.,Chorover,J.,et al.,2012.Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings:effect of plant species.Environ.Sci.Technol.46,1019-1027.
    Tripathi,D.K.,Singh,V.P.,Prasad,S.M.,Dubey,N.K.,Chauhan,D.K.,Rai,A.K.,2016.LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat(Triticum aestivum L.)seedlings.J.Photochem.Photobiol.B Biol.154,89-98.
    Unterbrunner,R.,Puschenreiter,M.,Sommer,P.,Wieshammer,G.,Tlusto?,P.,Zupan,M.,et al.,2007.Heavy metal accumulation in trees growing on contaminated sites in Central Europe.Environ.Pollut.148,107-114.
    Uveges,J.L.,Corbett,A.L.,Mal,T.K.,2002.Effects of lead contamination on the growth of Lythrum salicaria(purple loosestrife).Environ.Pollut.120,319-323.
    Velikova,V.,Yordanov,I.,Edreva,A.,2000.Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines.Plant Sci.151,59-66.
    Verbruggen,N.,Hermans,C.,Schat,H.,2009.Mechanisms to cope with arsenic or cadmium excess in plants.Curr.Opin.Plant Biol.12,364-372.
    Wang,S.F.,Shi,X.,Sun,H.J.,Chen,Y.T.,Pan,H.W.,Yang,X.E.,et al.,2014.Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.PLoS One 9,e108568.
    Wierzbicka,M.,1999.Comparison of lead tolerance in Allium cepa with other plant species.Environ.Pollut.104,41-52.
    Xin,J.L.,Huang,B.F.,Dai,H.W.,Zhou,W.J.,Yi,Y.M.,Peng,L.J.,2015.Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars.Environ.Sci.Pollut.Res.22,6254-6261.
    Zaier,H.,Ghnaya,T.,Lakhdar,A.,Baioui,R.,Ghabriche,R.,Mnasri,M.,et al.,2010.Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea:tolerance and accumulation.J.Hazard.Mater.183,609-615.
    Zhan,F.D.,Qin,L.,Guo,X.H.,Tan,J.B.,Liu,N.N.,Zu,Y.Q.,et al.,2016.Cadmium and lead accumulation and low-molecularweight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L.with Vicia faba L.RSCAdv.6,33240-33248.
    Zhang,X.,Zhu,Y.G.,Zhang,Y.B.,Liu,Y.X.,Liu,S.C.,Guo,J.W.,et al.,2014.Growth and metal uptake of energy sugarcane(Saccharum spp.)in different metal mine tailings with soil amendments.J.Environ.Sci.26,1080-1089.
    Zhao,Y.F.,Wu,J.F.,Shang,D.R.,Ning,J.S.,Zhai,Y.X.,Sheng,X.F.,et al.,2015.Subcellular distribution and chemical forms of cadmium in the edible seaweed,Porphyra yezoensis.Food Chem.168,48-54.
    Zheng,L.J.,Peer,T.,Seybold,V.,Lütz-Meindl,U.,2012.Pb-induced ultrastructural alterations and subcellular localization of Pb in two species of Lespedeza by TEM-coupled electron energy loss spectroscopy.Environ.Exp.Bot.77,196-206.
    Zhong,B.,Chen,J.R.,Shafi,M.,Guo,J.,Wang,Y.,Wu,J.S.,et al.,2017.Effect of lead(Pb)on antioxidation system and accumulation ability of Moso bamboo(Phyllostachys pubescens).Ecotoxicol.Environ.Saf.138,71-77.
    Zhou,F.R.,Wang,J.X.,Yang,N.,2015a.Growth responses,antioxidant enzyme activities and lead accumulation of Sophora japonica and Platycladus orientalis seedlings under Pb and water stress.Plant Growth Regul.75,383-389.
    Zhou,L.Y.,Zhao,Y.,Wang,S.F.,Han,S.S.,Liu,J.,2015b.Lead in the soil-mulberry(Morus alba L.)-silkworm(Bombyx mori)food chain:translocation and detoxification.Chemosphere 128,171-177.
    Zhou,C.F.,Huang,M.Y.,Li,Y.,Luo,J.W.,Cai,L.P.,2016a.Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana.Environ.Sci.Pollut.Res.23,21794-21804.
    Zhou,S.,Kai,H.L.,Zha,Z.Y.,Fang,Z.D.,Wang,D.N.,Du,L.,et al.,2016b.Subcellular distribution and chemical forms of thorium in Brassica juncea var.foliosa.J.Environ.Radioact.157,60-66.
    Zhou,C.F.,Huang,M.Y.,Ren,H.J.,Yu,J.D.,Wu,J.M.,Ma,X.Q.,2017.Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill.seedlings.Ecotoxicol.Environ.Saf.142,59-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700