霜疫霉侵染后荔枝果皮结构变化的扫描电镜观察
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scanning Electron Microscope Observation on the Changes of Litchi Exocarp Inoculated with Phytophthora litchii
  • 作者:孙进华 ; 曹璐璐 ; 李焕苓 ; 王果 ; 王树军 ; 李芳 ; 王家保 ; 张蕾
  • 英文作者:SUN Jinhua;CAO Lulu;LI Huanling;WANG Guo;WANG Shujun;LI Fang;WANG Jiabao;ZHANG Lei;Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences;Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences;
  • 关键词:荔枝 ; 霜疫霉 ; 外果皮结构 ; 扫描电子显微镜
  • 英文关键词:litchi;;Phytophthora litchii;;structure of exocarp;;scanning electron microscopy
  • 中文刊名:RDZX
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:中国热带农业科学院环境与植物保护研究所;中国热带农业科学院热带作物品种资源研究所;
  • 出版日期:2019-05-25
  • 出版单位:热带作物学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金青年科学基金项目(No.31301766);国家自然科学基金面上项目(No.31872088);; 国家荔枝龙眼产业技术体系(No.CARS-33-03);; 海南省自然科学基金面上项目(No.317265)
  • 语种:中文;
  • 页:RDZX201905017
  • 页数:6
  • CN:05
  • ISSN:46-1019/S
  • 分类号:123-128
摘要
霜疫霉病严重危害荔枝果实的产量和质量,其病原菌是霜疫霉(Phytophthora litchii Chen ex Ko et al.)。以4×10~4cfu/mL霜疫霉孢子悬浮液分别接种抗病品种‘黑叶’和感病品种‘桂味’的果实,通过扫描电子显微镜观察接种0、1、6、12、24、48、72、96 h后荔枝外果皮显微结构的变化。扫描电镜观察发现,‘黑叶’果皮的龟裂片平整,主要组成单元为微小乳突状结构,其中间微微凸起且结构致密紧实;‘桂味’果皮的裂片谷较深,主要组成单元为微小蜂窝状结构,其中间凹陷且壁薄挺立。随着贮藏时间的延长,2个品种外果皮均出现不同程度的损伤,但‘黑叶’比‘桂味’损伤较轻。用相同浓度霜疫霉孢子接种后,‘桂味’果皮附着孢子的数量是‘黑叶’的近5倍,说明‘桂味’果皮显微结构更易于霜疫霉孢子的附着和侵染。接种霜疫霉后,病原菌侵染加剧荔枝外果皮结构的崩解,但‘黑叶’外果皮崩解速度较慢。在‘黑叶’上霜疫霉的孢子萌发、菌丝生长和孢子囊形成都晚于‘桂味’,说明其对霜疫霉的生长有一定的抑制作用。‘黑叶’和‘桂味’果皮显微结构的差异是其对霜疫霉表现不同抗性的重要原因。
        Litchi downy blight is a damaging oomycete disease, caused by Phytophthora litchii. The 4×10~4 cfu/mL sporangium suspension was used to inoculate the fruit of the resistant cultivar ‘Heiye' and susceptible cultivar ‘Guiwei'.The ultra-structural changes of exocarps was investigated by the Scanning Electron Microscopy(SEM) method at 0, 1, 6,12, 24, 48, 72, and 96 h post-inoculation. The results indicated that the lobe of exocarp was flat and consisted of convex and compact honeycomb in ‘Heiye', while the valley of lobe was deep, and the honeycomb was thin and erect in ‘Guiwei'. The integrity of exocarps was damaged with the prolonging of the harvest time. The infection of P. litchii promoted the dissociation of exocarps, as well as the damage degree of ‘Hieye" was lower than that of ‘Guiwei'. Under the same inoculation condition, the exocarps of ‘Guiwei' harbored nearly five times sporangia than that of ‘Heiye'. The character of lobe and honeycomb was more easily agglutinated and infected by the spores of P. litchii in ‘Guiwei'. The infection of P. litchii accelerated the breakdown of exocarp structure, which had a small impact on ‘Heiye'. Comparing with ‘Guiwei', the gemination of spores, as well as growth of mycelium and formation of sporangia, was lagging in‘Heiye'. It is suggested that the growth of P. litchii is repressed in the exocarps of resistant cultivars. The structure difference of the exocarp is the reason why ‘Guiwei' is more susceptible to P. litchii than ‘Heiye'.
引文
[1]Vien N V,Benyon F H L,Trung H M,et al.First record of Peronophythora litchii on litchi fruit in Vietnam[J].Australasian Plant Pathology,2001,30(3):287-288.
    [2]刘秀娟,胡美娇.荔枝果实采后病害和防腐保鲜技术[J].热带农业科学,2000,20(1):67-73.
    [3]Wang H C,Zou M G.Baseline and differential sensitivity of Peronophythora litchii(lychee downy blight)to three carboxylic acid amide fungicides[J].Plant Pathology,2009,58:571-572.
    [4]戚佩坤.广东果树真菌病害志[M].北京:中国农业出版社,2000:41-42.
    [5]戚佩坤,潘雪萍,刘任.荔枝霜疫病的研究Ⅰ-病原菌的鉴定及其侵染过程[J].植物病理学报,1984,14(2):113-119.
    [6]赖传雅.农业植物病理学:华南本[M].北京:科学出版社,2003:211-213.
    [7]Liu J,Liu A,Chen W.Studies on the biological characteristics of lychee downy blight[J].Acta Horticulturae,2005(665):415-420.
    [8]Kao C W,Leu L S.Sporangium germination of Peronophythora litchii,the causal of litchi downy blight[J].Mycologia,1980,72(4):737-748.
    [9]翁巧,刘锡滨,李小舍,等.几种杀菌剂防止荔枝霜疫霉病的田间药效试验[J].广东农业科学,2010,37(8):142-143.
    [10]彭埃天,凌金锋,习平根,等.我国荔枝产区杀菌剂的使用现状及建议[J].中国热带农业,2011(5):64-67.
    [11]周俞辛,韦伟.荔枝霜疫霉病的发生及综合防治[J].汉中科技,2013(6):54-55.
    [12]易赛,潘汝谦,徐大高,等.荔枝霜疫霉对烯酰吗啉的敏感性测定[J].广东农业科学,2014,41(2):87-91.
    [13]杨德东.荔枝霜疫霉病的发生与防治[J].植物医生,2015,28(5):14-15.
    [14]常金梅,张鲁斌,柳凤,等.芒果果实抗病性差异及其与果皮结构相关性初探[J].热带作物学报,2012,33(11):2040-2043.
    [15]林河通,陈绍军,席玙芳,等.龙眼果皮微细结构的扫描电镜观察及其与果实耐贮性的关系[J].农业工程学报,2002,18(3):95-99.
    [16]杨丽丽,庄艳,王忆,等.不同抗性苹果果实受轮纹病菌侵染后亚显微结构的变化[J].园艺学报,2012,39(5):963-969.
    [17]关晔晴.苹果果面结构与轮纹病抗病性关系的研究[D].北京:中国农业大学,2015:4.
    [18]Konarska A.The structure of the fruit peel in two varieties of Malus domestica Borkh.(Rosaceae)before and after storage[J].Protoplasma,2013,250:701-714.
    [19]王艳娜.鸭梨果实轮纹病寄主-病原菌互作机理[D].北京:中国林业科学研究院,2007:7.
    [20]沈雅飞,段文军,胡娟娟,等.油茶果皮解剖结构与炭疽病抗性的关系[J].植物保护,2015,41(6):98-102.
    [21]彭永宏,林国辉.荔枝果皮超微结构的比较观察[J].果树科学,1999,16(1):18-23.
    [22]胡新宇.荔枝采后生理与常温保鲜的研究[D].广州:华南理工大学,2001:12.
    [23]潘洵操,谢宝贵.荔枝果皮的扫描电镜观察[J].园艺学报,1996,23(3):227-230.
    [24]朱若鑫.福建主栽荔枝品种的果实对霜疫霉的抗病性及机理初探[D].福州:福建农林大学,2011.
    [25]蔡学清,林娜,陈炜,等.荔枝霜疫霉的生物学特性[J].热带作物学报,2009,30(9):1126-1131.
    [26]曹璐璐,孙进华,王家保.荔枝果实对霜疫霉侵染抗性评价体系建立及初步应用[J].热带作物学报,2017,38(1):126-130.
    [27]李和平.植物显微技术[M].北京:科学出版社,2014:85-89.
    [28]唐启义.DPS数据处理系统[M].北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700