组合相变材料强化固液相变传热可视化实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs
  • 作者:王慧儒 ; 刘振宇 ; 姚元鹏 ; 吴慧英
  • 英文作者:WANG Huiru;LIU Zhenyu;YAO Yuanpeng;WU Huiying;School of Mechanical Engineering, Shanghai Jiao Tong University;
  • 关键词:组合相变材料 ; 蓄热 ; 相界面 ; 温度分布 ; 可视化
  • 英文关键词:multiple PCMs;;thermal energy storage;;phase interface;;temperature distribution;;visualization
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:上海交通大学机械与动力工程学院;
  • 出版日期:2019-01-31 09:53
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51820105009,51536005,51521004)
  • 语种:中文;
  • 页:HGSZ201904004
  • 页数:10
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:28-36+427
摘要
采用高清相机和红外热像技术,对组合相变材料融化-凝固循环过程与传热特性开展了可视化实验研究。以填充三种石蜡的相变蓄热腔体为研究对象,追踪了腔体内固液相界面的动态演化过程和温度分布的变化规律。在此基础上,考察了相变材料布置顺序对蓄热腔体热性能的影响,分析了组合相变材料蓄热腔体的相变行为及强化传热特性。结果表明,相变温度较高的相变材料应靠近加热壁面布置;组合相变材料蓄热腔体存在多个固液相界面现象,不同相变材料可同时融化/凝固;与单一相变材料相比,组合相变材料的应用改善了蓄热腔体各单元相变速率的均匀性,提高了平均相变速率;组合相变材料虽然降低了蓄热腔体的显热蓄热量,但减小了温度变化速率,增强了系统的稳定性,并显著增加了潜热蓄热量,有效提高了相变蓄热腔体的总蓄热量。
        Visualization experiments were carried out on the melting-solidification cycle process and heat transfer characteristics of the multiple phase change materials(multiple PCMs) using high-definition cameras and infrared thermal imaging technology. Three paraffins(RT65, RT42 and RT27) were used as multiple PCMs and filled into the TES container. The effect of PCM arrangement on thermal performance of the TES container was investigated.The dynamic evolution of solid-liquid interfaces was recorded by a high definition(HD) camera and the variation of temperature distribution was measured by an infrared camera. As the melting-solidification cyclic process was stabilized, the solid-liquid phase change behavior and thermal characteristics of the multiple-PCM TES container were obtained and compared with that of single-PCM TES container. The results show that the PCM with higher phase change temperature should be located near the heated wall. There exist multiple solid-liquid interfaces in multiple-PCM TES container, the paraffins in different PCM units can melt/solidify simultaneously. The uniformity of phase change rate is greatly improved by multiple PCMs, which increases the average phase change rate. The phase change fraction of multiple-PCM TES container is 40% higher than that of single-PCM TES container.Although the sensible heat storage capacity of multiple-PCM TES container is a little lower than that of single-PCM TES container, the variation rate of temperature is reduced, which enables the TES container work more stable. The latent heat storage capacity of TES container is significantly increased by the utilization of multiple PCMs. As a result, the total heat storage capacity of multiple-PCM TES container is 34.6% higher than that of single-PCM TES container.
引文
[1] Lin Y, Jia Y, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2730-2742.
    [2] Dhaidan N S, Khodadadi J M, Al-Hattab T A, et al. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity[J]. International Journal of Heat and Mass Transfer,2013, 67:455-468.
    [3]施尚,余建祖,陈梦东,等.基于泡沫铜/石蜡的锂电池热管理系统性能[J].化工学报, 2017, 68(7):2678-2683.Shi S, Yu J Z, Chen M D, et al. Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7):2678-2683.
    [4] Yao Y, Wu H, Liu Z, et al. Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam[J]. International Journal of Thermal Sciences, 2018, 123:73-85.
    [5]张鹏,肖鑫,王如竹,等.壳管式潜热蓄能系统换热特性[J].化工学报, 2012, 63(S2):14-20.Zhang P, Xiao X, Wang R Z, et al. Heat transfer characteristics of shell-tube latent thermal energy storage system[J]. CIESC Journal, 2012, 63(S2):14-20.
    [6] Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storage system:a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9):2225-2244.
    [7] Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications:a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74:26-50.
    [8] Farid M M. Storage of solar energy with phase change[J]. Journal of Solar Energy Research, 1986, 4:11-29.
    [9] Farid M M, Kanzawa A. Thermal performance of a heat storage module using PCM's with different melting temperatures:mathematical modeling[J]. Journal of Solar Energy Engineering,1989, 111:152-157.
    [10] Mosaffa A H, Infante F C A, Talati F, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67:1-7.
    [11] Mosaffa A H, Garousi F L, Infante F C A, et al. Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable Energy, 2014, 68:452-458.
    [12] Gong Z X, Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering, 1996, 16(10):807-815.
    [13] Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27:994-1000.
    [14] Seeniraj R V, Lakshmi N N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J].Solar Energy, 2008, 82:535-542.
    [15] Adine H A, El Q H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33:2132-2144.
    [16] Kurnia J C, Sasmito A P, Jangam S V, et al. Improved design for heat transfer performance of a novel phase change material(PCM)thermal energy storage(TES)[J]. Applied Thermal Engineering,2013, 50:896-907.
    [17] Liu M, Tay N H S, Belusko M, et al. Investigation of cascaded shell and tube latent heat storage systems for solar tower power plants[J]. Energy Procedia, 2015, 69:913-924.
    [18] Yang L, Zhang X, Xu G. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68:639-646.
    [19]杨磊,张小松.多熔点相变材料堆积蓄热床蓄热性能分析[J].化工学报, 2012, 63(4):1032-1037.Yang L, Zhang X S. Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4):1032-1037.
    [20] Wu M, Xu C, He Y. Cyclic behaviors of the molten-salt packedbed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93:1061-1073.
    [21] Cui H, Yuan X, Hou X. Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23:2353-2361.
    [22] Tao Y B, He Y L, Liu Y K, et al. Performance optimization of twostage latent heat storage unit based on entransy theory[J].International Journal of Heat and Mass Transfer, 2014, 77:695-703.
    [23]王慧儒,吴慧英.最小热阻原理在组合式相变材料蓄热过程优化中的应用[J].科学通报, 2015, 60(34):3377-3385.Wang H R, Wu H Y. Application of minimum thermal resistance principle in optimization for melting process with multiple PCMs[J]. Chinese Science Bulletin, 2015, 60(34):3377-3385.
    [24] Ezra M, Kozak Y, Dubovsky V, et al. Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2016, 93:315-329.
    [25] Xu H J, Zhao C Y. Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J].Renewable Energy, 2016, 86:228-237.
    [26] Wang H, Liu Z, Wu H. Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array[J]. Energy, 2017, 138:739-751.
    [27] Watanabe T, Kikuchi H, Kanzawa A. Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems and CHP, 1993, 13(1):57-66.
    [28] Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International Journal of Energy Research, 2001, 25:439-447.
    [29] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy, 2007, 81:829-837.
    [30] PeiróG, Gasia J, MiróL, et al. Experimental evaluation at pilot plant scale of multiple PCMs(cascaded)vs. single PCM configuration for thermal energy storage[J]. Renewable Energy,2015, 83:729-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700