Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem
  • 作者:Jingwen ; Zeng ; Piao ; Xu ; Guiqiu ; Chen ; Guangming ; Zeng ; Anwei ; Chen ; Liang ; Hu ; Zhenzhen ; Huang ; Kai ; He ; Zhi ; Guo ; Weiwei ; Liu ; Jing ; Wu ; Jiangbo ; Shi
  • 英文作者:Jingwen Zeng;Piao Xu;Guiqiu Chen;Guangming Zeng;Anwei Chen;Liang Hu;Zhenzhen Huang;Kai He;Zhi Guo;Weiwei Liu;Jing Wu;Jiangbo Shi;College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University;College of Resources and Environment, Hunan Agricultural University;
  • 英文关键词:Silver nanoparticles;;Toxicity;;Dosing regimen;;Silver ions;;Zebrafish
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University;College of Resources and Environment, Hunan Agricultural University;
  • 出版日期:2018-12-14
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.75
  • 基金:supported by the National Natural Science Foundation of China (Nos.51579099,51521006,and 51508186);; the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT-13R17);; the Hunan Provincial Natural Science Foundation of China (No.2016JJ3076)
  • 语种:英文;
  • 页:HJKB201901016
  • 页数:12
  • CN:01
  • ISSN:11-2629/X
  • 分类号:184-195
摘要
Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
        Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
引文
Baker,T.J.,Tyler,C.R.,Galloway,T.S.,2014.Impacts of metal and metal oxide nanoparticles on marine organisms.Environ.Pollut.186,257-271.
    Bernhardt,E.S.,Colman,B.P.,Hochella Jr.,M.F.,Cardinale,B.J.,Nisbet,R.M.,Richardson,C.J.,et al.,2010.An ecological perspective on nanomaterial impacts in the environment.J.Environ.Qual.39(6),1-12.
    Bone,A.J.,Colman,B.P.,Gondikas,A.P.,Newton,K.M.,Harrold,K.H.,Cory,R.M.,et al.,2012.Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles:part 2-toxicity and Ag speciation.Environ.Sci.Technol.46(13),6925-6933.
    Chae,Y.J.,Pham,C.H.,Lee,J.,Bae,E.,Yi,J.,Gu,M.B.,2009.Evaluation of the toxic impact of silver nanoparticles on Japanese medaka(Oryzias latipes).Aquat.Toxicol.94(4),320-327.
    Cheng,Y.,He,H.J.,Yang,C.P.,Zeng,G.M.,Li,X.,Chen,H.,et al.,2016.Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.Biotechnol.Adv.34(6),1091-1102.
    Choi,Y.,Kim,H.,Kim,K.W.,Lee,B.,2017.Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli.J.Environ.Sci.https://doi.org/10.1016/j.jes.2017.04.028.
    Colman,B.P.,Espinasse,B.,Richardson,C.J.,Matson,C.W.,Lowry,G.V.,Hunt,D.E.,et al.,2014.Emerging contaminant or an old toxin in disguise?Silver nanoparticle impacts on ecosystems.Environ.Sci.Technol.48(9),5229-5236.
    Cong,Y.,Bantaa,G.T.,Selcka,H.,Berhanub,D.,Jones,E.V.,Forbes V.E.,2011.Toxic effects and bioaccumulation of nano-,micronand ionic-Ag in the polychaete,Nereis diversicolor.Aquat.Toxicol.105(3-4),403-411.
    Das,P.,Xenopoulos,M.A.,Metcalfe,C.D.,2013.Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate,Daphnia magna.Bull.Environ.Contam.Toxicol.91(1),76-82.
    Das,P.,Metcalfe,C.D.,Xenopoulos,M.A.,2014.Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters.Environ.Sci.Technol.48(8),4573-4580.
    Dazy,M.,Masfaraud,J.F.,Ferard,J.F.,2009.Introduction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw.Chemosphere 75(3),297-302.
    Fabrega,J.,Zhang,R.,Renshaw,J.C.,Liu,W.T.,Lead,J.R.,2011.Impact of silver nanoparticles on natural marine biofilm bacteria.Chemosphere 85(6),961-966.
    Fan,T.,Liu,Y.,Feng,B.,Zeng,G.,Yang,C.,Zhou,M.,et al.,2008.Biosorption of cadmium(II),zinc(II)and lead(II)by Penicillium simplicissimum:isotherms,kinetics and thermodynamics.J.Hazard.Mater.160(2-3),655-661.
    Farmen,E.,Mikkelsen,H.N.,Evensen,O.,Einset,J.,Heier,L.S.,Rosseland,B.O.,et al.,2012.Acute and sub-lethal effects in juvenile Atlantic salmon exposed to lowμg/L concentrations of Ag nanoparticles.Aquat.Toxicol.108,78-84.
    Faunce,T.,Watal,A.,2010.Nanosilver and global public health:international regulatory issues.Nanomedicine 5(4),617-632.
    Feng,Y.,Gong,J.L.,Zeng,G.M.,Niu,Q.Y.,Zhang,H.Y.,Niu,C.G.,et al.,2010.Adsorption of Cd(II)and Zn(II)from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents.Chem.Eng.J.162(2),487-494.
    Furtado,L.M.,Norman,B.,Xenopoulos,M.,Frost,P.C.,Metcalfe,CD.,Hintelmann,H.,2015.Environmental fate of silver nanoparticles in Boreal Lake ecosystems.Environ.Sci.Technol.49(14),8441-8450.
    García-Sánchez,M.,Garrido,I.,Casimiro,I.J.,Casero,P.J.,Espinosa F.,Aranda,I.,et al.,2012.Defense response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue.Chemosphere 89(6),708-716.
    Gong,J.L.,Wang,B.,Zeng,G.M.,Yang,C.P.,Niu,C.G.,Niu,Q.Y.,et al.,2009.Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.J.Hazard.Mater.164(2-3),1517-1522.
    Gottschalk,F.,Sun,T.,Nowack,B.,2013.Environmental concentrations of engineered nanomaterials:review of modeling and analytical studies.Environ.Pollut.181(6),287-300.
    Grossklaus,D.,Bailao,A.M.,Rezende,T.C.V.,Borges,C.L.,Oliveira M.A.P.,Parente,J.A.,et al.,2013.Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis.Microbes Infect.15,347-364.
    Guo,Z.,Chen,G.,Zeng,G.,Li,Z.,Chen,A.,Yan,M.,et al.,2014.Ultrasensitive detection and co-stability of mercury(II)ions based on amalgam formation with Tween 20-stabilized silver nanoparticles.RSC Adv.4(103),59275-59283.
    Guo,Z.,Chen,G.,Zeng,G.,Liang,J.,Huang,B.,Xiao,Z.,et al.,2016Determination of inequable fate and toxicity of Ag nanoparticles in a Phanerochaete chrysosporium biofilm system through different sulfide sources.Environ.Sci.Nano 3(5),1027-1035.
    Handy,R.D.,Al-Bairuty,G.,Al-Jubory,A.,Ramsden,C.S.,Boyle,D.Shaw,B.J.,et al.,2011.Effects of manufactured nanomaterials on fishes:A target organ and body systems physiology approach.J.Fish Biol.79(4),821-853.
    He,D.,Bligh,M.W.,Waite,T.D.,2013.Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles.Environ.Sci.Technol.47(16),9148-9156.
    Hu,X.,Wang,J.,Liu,Y.,Li,X.,Zeng,G.,Bao,Z.,et al.,2011.Adsorption of chromium(VI)by ethylenediamine-modified cross-linked magnetic chitosan resin:isotherms,kinetics and thermodynamics.J.Hazard.Mater.185(1),306-314.
    Hu,L.,Zhang,C.,Zeng,G.M.,Chen,G.Q.,Wan,J.,Guo,Z.,et al.,2016.Metal-based quantum dots:synthesis,surface modification,transport and fate in aquatic environments and toxicity to microorganisms.RSC Adv.6,78595-78610.
    Hu,L.,Wan,J.,Zeng,G.M.,Chen,A.W.,Chen,G.Q.,Huang,Z.Z.,et al.,2017.Comprehensive evaluation of the cytotoxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium by cellular uptake and oxidative stress.Environ.Sci.Nano https://doi.org/10.1039/C7EN00517B.
    Huang,D.L.,Zeng,G.M.,Feng,C.L.,Hu,S.,Jiang,X.Y.,Tang,L.,et al.,2008.Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity.Environ.Sci.Technol.42(13),4946-4951.
    Huang,Z.,Chen,G.,Zeng,G.,Guo,Z.,He,K.,Hu,L.,et al.,2017.Toxicity mechanisms and synergies of silver nanoparticles in2,4-dichlorophenol degradation by Phanerochaete chrysosporium.J.Hazard.Mater.321,37-46.
    Huang,Z.,Xu,P.,Chen,G.,Zeng,G.,Chen,A.,Song,Z.,et al.,2018.Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium.Chemosphere 196,525-584.
    Kaegi,R.,Voegelin,A.,Ort,C.,Sinnet,B.,Thalmann,B.,Krismer,J.,et al.,2013.Fate and transformation of silver nanoparticles in urban wastewater systems.Water Res.47(12),3866-3877.
    Kahru,A.,Dubourguier,H.C.,Blinova,I.,Ivask,A.,Kasemets,K.,2008.Biotests and biosensors for ecotoxicology of metal oxide nanoparticles:a minireview.Sensors 8,5153-5170.
    Keller,A.A.,McFerran,S.,Lazareva,A.,Suh,S.,2013.Global life cycle releases of engineered nanomaterials.J.Nanopart.Res.15(6),1-17.
    Kennedy,A.J.,Chappell,M.A.,Bednar,A.J.,Ryan,A.C.,Laird,J.G.,Stanley,J.K.,et al.,2012.Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles.Environ.Sci.Technol.46(19),10772-10780.
    Laban,G.,Nies,L.,Turco,R.,Bickham,J.,Sepulveda,M.,2010.The effects of silver nanoparticles on fathead minnow(Pimephales promelas)embryos.Ecotoxicology 19(1),185-195.
    Levard,C.,Reinsch,B.C.,Michel,F.M.,Oumahi,C.,Lowry Jr.,G.V.,Brown,G.E.,2011.Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution:impact on dissolution rate.Environ.Sci.Technol.45(12),5260-5266.
    Lowry,G.V.,Espinasse,B.P.,Badireddy,A.R.,Richardson,C.J.,Reinsch,B.C.,Bryant,L.D.,et al.,2012.Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.Environ.Sci.Technol.46(13),7027-7036.
    Massarsky,A.,Dupuis,L.,Taylor,J.,Eisa-Beygi,S.,Strek,L.,Trudeau,V.L.,et al.,2013.Assessment of nanosilver toxicity during zebrafish(Danio rerio)development.Chemosphere 92,59-66.
    Norie,T.,Kazutaka,N.A.,Ishimaru,K.,2003.Antioxidative capacity of extracts and constituents in Cornus capitata adventitious roots.J.Agric.Food Chem.51(20),5906-5910.
    Pietrobelli,J.M.T.deA.,Modenes,A.N.,Fagundes-Klen,M.R.,Espinoza-Qui?ones,F.R.,2009.Cadmium,copper and zinc biosorption study by non-living E.densa biomass.Water Air Soil Pollut.202(1-4),385-392.
    Qiu,R.L.,Zhao,X.Y.,Tang,T.,Yu,F.M.,Hu,P.J.,2008.Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator.Arabis paniculata F.Chemosphere 74(1),6-12.
    Quadros,M.E.,Marr,L.C.,2011.Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products.Environ.Sci.Technol.45(24),10713-10719.
    Ramskov,T.,Forbes,V.E.,Gilliland,D.,Selck,H.,2015.Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates.Aquat.Toxicol.166,96-105.
    Vance,M.E.,Kuiken,T.,Vejerano,E.P.,McGinnis,S.P.,Hochella,MF.,Rejeski,D.,et al.,2015.Nanotechnology in the real world:redeveloping the nanomaterial consumer products inventory.Beilstein J.Nanotechnol.6,1769-1780.
    Wang,J.,Wang,W.,2014.Low bioavailability of silver nanoparticles presents trophic toxicity to marine Medaka(Oryzias melastigma).Environ.Sci.Technol.48(14),8152-8161.
    Xu,P.,Zeng,G.M.,Huang,D.L.,Feng,C.L.,Hu,S.,Zhao,M.H.,et al.2012.Use of iron oxide nanomaterials in wastewater treatment:a review.Sci.Total Environ.424(4),1-10.
    Yang,C.P.,Chen,H.,Zeng,G.M.,Yu,G.L.,Luo,S.L.,2010.Biomass accumulation and control strategies in gas biofiltration.Biotechnol.Adv.28(4),531-540.
    Zeng,G.,Chen,A.,Chen,G.,Hu,X.,Guan,S.,Shang,C.,et al.,2012Responses of Phanerochaete chrysosporium to toxic pollutants:physiological flux,oxidative stress,and detoxification.Environ.Sci.Technol.46(14),7818-7825.
    Zeng,G.M.,Chen,M.,Zeng,Z.,2013.Shale gas:surface water also at risk.Nature 499(7457),154.
    Zeng,G.M.,Wan,J.,Huang,D.L.,Hu,L.,Huang,C.,Cheng,M.,et al.,2017.Precipitation,adsorption and rhizosphere effect:the mechanisms for phosphate-induced Pb immobilization in soils-a review.J.Hazard.Mater.339,354-367.
    Zhang,Y.,Zeng,G.M.,Tang,L.,Huang,D.L.,Jiang,X.Y.,Chen,Y.N.,2007.A hydroquinone biosensor based on immobilizing laccase to modified core-shell magnetic nanoparticles supported on carbon paste electrode.Biosens.Bioelectron.22(9),2121-2126.
    Zuo,Y.N.,Chen,G.Q.,Zeng,G.M.,Li,Z.W.,Yan,M.,Chen,A.W.,et al.,2015.Transport,fate,and stimulating impact of silver nanoparticles on the removal of Cd(II)by Phanerochaete chrysosporium in aqueous solutions.J.Hazard.Mater.285,236-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700