Template-free synthesis of hollow TiO_2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Template-free synthesis of hollow TiO_2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde
  • 作者:Hongbing ; Song ; Zong ; Liu ; Yongjie ; Wang ; Na ; Zhang ; Xiaofei ; Qu ; Kai ; Guo ; Meng ; Xiao ; Hengjun ; Gai
  • 英文作者:Hongbing Song;Zong Liu;Yongjie Wang;Na Zhang;Xiaofei Qu;Kai Guo;Meng Xiao;Hengjun Gai;College of Chemical Engineering, Qingdao University of Science and Technology;College of Materials Science and Engineering, Qingdao University of Science and Technology;
  • 英文关键词:Titanium dioxide;;Hollow nanospheres;;Photocatalytic oxidation;;Benzyl alcohol;;Visible light
  • 中文刊名:GENE
  • 英文刊名:绿色能源与环境(英文)
  • 机构:College of Chemical Engineering, Qingdao University of Science and Technology;College of Materials Science and Engineering, Qingdao University of Science and Technology;
  • 出版日期:2019-07-15
  • 出版单位:Green Energy & Environment
  • 年:2019
  • 期:v.4
  • 基金:support provided by the National Key R&D Program of China (No. 2017YFB0602804);; the National Natural Science Foundation of China (No. 21878164);; the National Key Technology Support Program of China (No. 2014BAC10B01);; the Key Scientific and Technological Project of Shanxi Province (No. MH2014-10)
  • 语种:英文;
  • 页:GENE201903008
  • 页数:9
  • CN:03
  • ISSN:10-1418/TK
  • 分类号:79-87
摘要
Heterogeneous photocatalytic system are widely applied to degrade organic pollutants or converse into high value-added chemicals. Both environmental and energy aspects should be considered to improve these chemical processes, favoring reaction conditions that involve room temperature and ambient O_2 pressure. In the present work, hollow titanium dioxide nanospheres were fabricated via template-free method. The prepared samples were characterized by X-ray diffraction, N_2 adsorption–desorption isotherms, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated by photocatalytic oxidation of benzyl alcohol to benzaldehyde with visible light under atmospheric pressure at room temperature. The designed hollow structure(2%Pt–TiO_2–5) not only exhibited a very high surface area,but also promoted photonic behavior and multiple light scattering, which as an efficient photocatalyst performed moderate conversion(about 20%) and high selectivity(> 99%) for oxidation of benzyl alcohol to benzaldehyde at room temperature with visible light in solvent of toluene.This work suggests that both hollow structure and Pt nanoparticles have great potential for execution of oxidative transformations under visible light.
        Heterogeneous photocatalytic system are widely applied to degrade organic pollutants or converse into high value-added chemicals. Both environmental and energy aspects should be considered to improve these chemical processes, favoring reaction conditions that involve room temperature and ambient O_2 pressure. In the present work, hollow titanium dioxide nanospheres were fabricated via template-free method. The prepared samples were characterized by X-ray diffraction, N_2 adsorption–desorption isotherms, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated by photocatalytic oxidation of benzyl alcohol to benzaldehyde with visible light under atmospheric pressure at room temperature. The designed hollow structure(2%Pt–TiO_2–5) not only exhibited a very high surface area,but also promoted photonic behavior and multiple light scattering, which as an efficient photocatalyst performed moderate conversion(about 20%) and high selectivity(> 99%) for oxidation of benzyl alcohol to benzaldehyde at room temperature with visible light in solvent of toluene.This work suggests that both hollow structure and Pt nanoparticles have great potential for execution of oxidative transformations under visible light.
引文
[1]H.Li,F.Qin,Z.Yang,X.Cui,J.Wang,L.Zhang,J.Am.Chem.Soc.139(2017)3513-3521.
    [2]J.Ding,W.Xu,H.Wan,D.S.Yuan,C.Chen,L.Wang,G.F.Guan,W.L.Dai,Appl.Catal.B:Environ.221(2018)626-634.
    [3]C.X.Zheng,G.P.He,X.Xiao,M.L.Lu,H.Zhong,X.X.Zuo,J.M.Nan,Appl.Catal.B:Environ.205(2017)201-210.
    [4]E.Gaster,S.Kozuch,D.Pappo,Angew.Chem.Int.Ed.Engl.56(2017)5912-5915.
    [5]D.Friedmann,A.Hakki,H.Kim,W.Choic,D.Bahnemann,Green Chem.18(2016)5391-5411.
    [6]Z.T.Wang,Y.J.Song,J.H.Zou,L.Y.Li,Y.Yu,L.Wu,Catal.Sci.Technol.8(2018)268-275.
    [7]F.Pellegrino,L.Pellutie,F.Sordello,C.Minero,E.Ortel,V.-D.Hodoroaba,V.Maurino,Appl.Catal.B:Environ.216(2017)80-87.
    [8]L.H.Yu,Y.M.Lin,D.Z.Li,Appl.Catal.B Environ.216(2017)88-94.
    [9]K.Q.Jing,J.H.Xiong,N.Qin,Y.J.Song,L.Y.Li,Y.Yu,S.J.Liang,L.Wu,Chem.Commun.53(2017)8604-8607.
    [10]S.Yurdakal,G.Palmisano,V.Loddo,V.Augugliaro,L.Palmisano,J.Am.Chem.Soc.130(2008)1568-1569.
    [11]A.Abd-Elaal,F.Parrino,R.Ciriminna,V.Loddo,L.Palmisano,M.Pagliaro,ChemistryOpen 4(2015)779-785.
    [12]T.Shishido,T.Miyatake,K.Teramura,Y.Hitomi,H.Yamashita,T.Tanaka,J.Phys.Chem.C 113(2009)18713-18718.
    [13]D.Tsukamoto,M.Ikeda,Y.Shiraishi,T.Hara,N.Ichikuni,S.Tanaka,T.Hirai,Chemistry 17(2011)9816-9824.
    [14]Z.-R.Tang,X.Yin,Y.Zhang,Y.-J.Xu,RSC Adv.3(2013)5956-5965.
    [15]M.Qamar,R.B.Elsayed,K.R.Alhooshani,M.I.Ahmed,D.W.Bahnemann,ACS Appl.Mater.Interfaces 7(2015)1257-1269.
    [16]B.Zhang,J.Li,Y.Gao,R.Chong,Z.Wang,L.Guo,X.Zhang,C.Li,J.Catal.345(2017)96-103.
    [17]X.Li,J.-L.Shi,H.Hao,X.Lang,Appl.Catal.B:Environ.232(2018)260-267.
    [18]S.S.Boxi,S.Paria,RSC Adv.5(2015)37657-37668.
    [19]N.Guo,Y.Liang,S.Lan,L.Liu,G.Ji,S.Gan,H.Zou,X.Xu,Appl.Surf.Sci.305(2014)562-574.
    [20]C.T.Dinh,H.Yen,F.Kleitz,T.O.Do,Angew.Chem.Int.Ed.Engl.53(2014)6618-6623.
    [21]K.L.Kelly,E.Coronado,L.L.Zhao,G.C.Schatz,J.Phys.Chem.B 107(2003)668-677.
    [22]L.Hou,M.Zhang,Z.Guan,Q.Li,J.Yang,J.Nanoparticle Res.20(2018)60.
    [23]Z.He,M.Hu,X.Wang,Catal.Today 302(2018)136-145.
    [24]X.Chen,S.S.Mao,Chem.Rev.107(2007)2891-2959.
    [25]D.Ding,B.Zhou,W.Fu,P.Lv,H.Yao,L.Liu,J.Wang,H.Yang,J.Mater.Sci.53(2017)3332-3340.
    [26]Y.Xiong,L.Yang,P.Xiao,Y.Yang,J.Mater.Sci.53(2018)7703-7714.
    [27]F.Huang,B.Motealleh,W.Zheng,M.T.Janish,C.B.Carter,C.J.Cornelius,Ceram.Int.44(2018)4577-4585.
    [28]Y.Li,Z.Liu,Y.Wu,J.Chen,J.Zhao,F.Jin,P.Na,Appl.Catal.BEnviron.224(2018)508-517.
    [29]C.Zhang,Y.Zhou,Y.Zhang,S.Zhao,J.Fang,X.Sheng,New J.Chem.41(2017)11089-11096.
    [30]Y.Zhang,H.Hu,M.Chang,H.Wei,D.Chen,M.Zhang,L.Wu,X.Li,J.Mater.Sci.53(2018)2102-2114.
    [31]D.Yang,M.Wang,B.Zou,G.L.Zhang,Z.Lin,Nanoscale 7(2015)12990-12997.
    [32]H.Segawa,J.Fukuyoshi,K.Tateishi,K.Tanaka,K.Yoshida,J.Mater.Sci.Lett.22(2003)687-690.
    [33]G.Liao,S.Chen,X.Quan,Y.Zhang,H.Zhao,Appl.Catal.B Environ.102(2011)126-131.
    [34]H.Yang,H.Zeng,J.Phys.Chem.B 108(2004)3492-3495.
    [35]G.Wang,H.Wang,Y.Ling,Y.Tang,X.Yang,R.C.Fitzmorris,C.Wang,J.Z.Zhang,Y.Li,Nano Lett.11(2011)3026-3033.
    [36]Z.Wang,C.Yang,T.Lin,H.Yin,P.Chen,D.Wan,F.Xu,F.Huang,J.Lin,X.Xie,M.Jiang,Energy Environ.Sci.6(2013)3007-3014.
    [37]S.-M.Kim,Y.-G.Jo,S.-Y.Lee,Electrochim.Acta 174(2015)1244-1252.
    [38]X.L.Du,X.L.Wang,Y.H.Li,Y.L.Wang,J.J.Zhao,L.J.Fang,L.R.Zheng,H.Tong,H.G.Yang,Chem.Commun.53(2017)9402-9405.
    [39]E.Talas,Z.Paszti,L.Korecz,A.Domjan,P.Nemeth,G.P.Szíjjarto,J.Mihaly,A.Tompos,Catal.Today 306(2018)71-80.
    [40]C.Jin,Y.Dai,W.Wei,X.Ma,M.Li,B.Huang,Appl.Surf.Sci.426(2017)639-646.
    [41]J.Jin,C.Wang,X.-N.Ren,S.-Z.Huang,M.Wu,L.-H.Chen,T.Hasan,B.-J.Wang,Y.Li,B.-L.Su,Nano Energy 38(2017)118-126.
    [42]F.Wang,C.Wang,Y.Zhao,Z.Liu,Z.Chang,L.Fu,Y.Zhu,Y.Wu,D.Zhao,Small 12(2016)6207-6213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700