Ultralow-crosstalk,strictly non-blocking microring-based optical switch
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultralow-crosstalk,strictly non-blocking microring-based optical switch
  • 作者:QIXIANG ; CHENG ; LIANG ; YUAN ; DAI ; NATHAN ; C.ABRAMS ; YU-HAN ; HUNG ; PADRAIC ; E.MORRISSEY ; MADELEINE ; GLICK ; PETER ; O’BRIEN ; KEREN ; BERGMAN
  • 英文作者:QIXIANG CHENG;LIANG YUAN DAI;NATHAN C.ABRAMS;YU-HAN HUNG;PADRAIC E.MORRISSEY;MADELEINE GLICK;PETER O’BRIEN;KEREN BERGMAN;Department of Electrical Engineering,Columbia University,New York;Tyndall National Institute,University College Cork;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Department of Electrical Engineering,Columbia University,New York;Tyndall National Institute,University College Cork;
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:Air Force Research Laboratory(AFRL)(FA8650-15-2-5220);; Advanced Research Projects Agency—Energy(ARPA-E)(DE-AR00000843);; European Commission(EC)(H2020-731954);; Rockport Networks Inc
  • 语种:英文;
  • 页:GZXJ201902008
  • 页数:7
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:58-64
摘要
We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-order crosstalk. The 4 × 4 switching circuit consists of eight silicon microring-based spatial(de-)multiplexers interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed, showing losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with integrated micro-heaters to give an ~24 GHz passband. The fully packaged device is flip-chip bonded onto a printed circuit board breakout board with a UV-curved fiber array.
        We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-order crosstalk. The 4 × 4 switching circuit consists of eight silicon microring-based spatial(de-)multiplexers interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed, showing losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with integrated micro-heaters to give an ~24 GHz passband. The fully packaged device is flip-chip bonded onto a printed circuit board breakout board with a UV-curved fiber array.
引文
1.Q.Cheng,S.Rumley,M.Bahadori,and K.Bergman,“Photonic switching in high performance datacenters[Invited],”Opt.Express26,16022-16043(2018).
    2.J.Kim,C.J.Nuzman,B.Kumar,D.F.Lieuwen,J.S.Kraus,A.Weiss,C.P.Lichtenwalner,A.R.Papazian,R.E.Frahm,N.R.Basavanhally,D.A.Ramsey,V.A.Aksyuk,F.Pardo,M.E.Simon,V.Lifton,H.B.Chan,M.Haueis,A.Gasparyan,H.R.Shea,S.Arney,C.A.Bolle,P.R.Kolodner,R.Ryf,D.T.Neilson,and J.V.Gates,“1100×1100port MEMS-based optical crossconnect with 4-dB maximum loss,”IEEE Photon.Technol.Lett.15,1537-1539(2003).
    3.K.Kwon,T.J.Seok,J.Henriksson,J.Luo,L.Ochikubo,J.Jacobs,R.S.Muller,and M.C.Wu,“128×128 silicon photonic MEMS switch with scalable row/column addressing,”in Conference on Lasers and Electro-Optics,San Jose,California,2018(Optical Society of America,2018),paper SF1A.4.
    4.B.Robertson,H.Yang,M.M.Redmond,N.Collings,J.R.Moore,J.Liu,A.M.Jeziorska-Chapman,M.Pivnenko,S.Lee,A.Wonfor,I.H.White,W.A.Crossland,and D.P.Chu,“Demonstration of multicasting in a 1×9 LCOS wavelength selective switch,”J.Lightwave Technol.32,402-410(2014).
    5.H.C.H.Mulvad,A.Parker,B.King,D.Smith,M.Kovacs,S.Jain,J.Hayes,M.Petrovich,D.J.Richardson,and N.Parsons,“Beamsteering all-optical switch for multi-core fibers,”in Optical Fiber Communication Conference(Optical Society of America,2017),paper Tu2C.4.
    6.Q.Cheng,A.Wonfer,J.L.Wei,R.V.Penty,and I.H.White,“Lowenergy,high-performance lossless 8×8 SOA switch,”in Optical Fiber Communication Conference,OSA Technical Digest(Optical Society of America,2015),paper Th4E.6.
    7.R.Stabile,A.Albores-Mejia,and K.A.Williams,“Monolithic activepassive 16×16 optoelectronic switch,”Opt.Lett.37,4666-4668(2012).
    8.Q.Cheng,A.Wonfor,J.L.Wei,R.V.Penty,and I.H.White,“Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation,”Opt.Lett.39,1449-1452(2014).
    9.K.Suzuki,R.Konoike,J.Hasegawa,S.Suda,H.Matsuura,K.Ikeda,S.Namiki,and H.Kawashima,“Low insertion loss and power efficient32×32 silicon photonics switch with extremely-high-ΔPLC connector,”in Optical Fiber Communication Conference,San Diego,California,2018(Optical Society of America,2018),paper Th4B.5.
    10.T.Chu,L.Qiao,W.Tang,D.Guo,and W.Wu,“Fast,high-radix silicon photonic switches,”in Optical Fiber Communications Conference and Exposition(OFC)(Optical Society of America,2018),paper Th1J.4.
    11.L.Chen and Y.-K.Chen,“Compact,low-loss and low-power 8×8 broadband silicon optical switch,”Opt.Express 20,18977-18985(2012).
    12.P.Dasmahapatra,R.Stabile,A.Rohit,and K.A.Williams,“Optical crosspoint matrix using broadband resonant switches,”IEEE J.Sel.Top.Quantum Electron.20,5900410(2014).
    13.N.Sherwood-Droz,H.Wang,L.Chen,B.G.Lee,A.Biberman,K.Bergman,and M.Lipson,“Optical 4×4 hitless silicon router for optical networks-on-chip(NoC),”Opt.Express 16,15915-15922(2008).
    14.Z.Pan,S.Fu,L.Lu,D.Li,W.Chang,D.Liu,and M.Zhang,“On-chip cyclic-AWG-based 12×12 silicon wavelength routing switches with minimized port-to-port insertion loss fluctuation,”Photon.Res.6,380-384(2018).
    15.Q.Cheng,M.Ding,A.Wonfor,J.Wei,R.V.Penty,and I.H.White,“The feasibility of building a 64×64 port count SOA-based optical switch,”in International Conference on Photonics in Switching(PS),Florence,Italy(2015),pp.199-201.
    16.A.Novack,Y.Liu,R.Ding,M.Gould,T.Baehr-Jones,Q.Li,Y.Yang,Y.Ma,Y.Zhang,K.Padmaraju,K.Bergmen,A.E.Lim,G.Lo,and M.Hochberg,“A 30 GHz silicon photonic platform,”Proc.SPIE 8781,878107(2013).
    17.M.Bahadori,A.Gazman,N.Janosik,S.Rumley,Z.Zhu,R.Polster,Q.Cheng,and K.Bergman,“Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,”J.Lightwave Technol.36,773-788(2018).
    18.Q.Xu,B.Schmidt,S.Pradhan,and M.Lipson,“Micrometre-scale silicon electro-optic modulator,”Nature 435,325-327(2005).
    19.A.S.P.Khope,T.Hirokawa,A.M.Netherton,M.Saeidi,Y.Xia,N.Volet,C.Schow,R.Helkey,L.Theogarajan,A.A.M.Saleh,J.E.Bowers,and R.C.Alferness,“On-chip wavelength locking for photonic switches,”Opt.Lett.42,4934-4937(2017).
    20.K.Padmaraju,D.F.Logan,T.Shiraishi,J.J.Ackert,A.P.Knights,and K.Bergman,“Wavelength locking and thermally stabilizing microring resonators using dithering signals,”J.Lightwave Technol.32,505-512(2014).
    21.C.Sun,M.Wade,M.Georgas,S.Lin,L.Alloatti,B.Moss,R.Kumar,A.H.Atabaki,F.Pavanello,J.M.Shainline,J.S.Orcutt,R.J.Ram,M.Popovi?,and V.Stojanovi?,“A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning,”IEEE J.Solid-State Circuits 51,893-907(2016).
    22.Q.Cheng,L.Y.Dai,M.Bahadori,N.C.Abrams,P.E.Morrissey,M.Glick,P.O’Brien,and K.Bergman,“Si/SiN microring-based optical router in switch-and-select topology,”in European Conference on Optical Communication(ECOC)(2018),paper We1C.3.
    23.M.Bahadori,M.Nikdast,S.Rumley,L.Y.Dai,N.Janosik,T.Van Vaerenbergh,A.Gazman,Q.Cheng,R.Polster,and K.Bergman,“Design space exploration of microring resonators in silicon photonic interconnects:impact of the ring curvature,”J.Lightwave Technol.36,2767-2782(2018).
    24.Q.Cheng,M.Bahadori,S.Rumley,and K.Bergman,“Highlyscalable,low-crosstalk architecture for ring-based optical space switch fabrics,”in IEEE Optical Interconnects Conference(OI)(2017),pp.41-42.
    25.L.S.Yan,Y.Wang,B.Zhang,C.Yu,J.McGeehan,L.Paraschis,and A.E.Willner,“Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,”Opt.Express 13,5106-5115(2005).
    26.J.Ruzbarsky,J.Turan,and L.Ovsenik,“Effects act on transmitted signal in a fully optical fiber WDM systems,”in IEEE 13th International Scientific Conference on Informatics(2015),pp.217-221.
    27.Q.Cheng,M.Bahadori,M.Glick,S.Rumley,and K.Bergman,“Recent advances in optical technologies for data centers:a review,”Optica 5,1354-1370(2018).
    28.W.D.Sacher,Y.Huang,G.Lo,and J.K.S.Poon,“Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,”J.Lightwave Technol.33,901-910(2015).
    29.J.F.Bauters,M.J.R.Heck,D.D.John,J.S.Barton,C.M.Bruinink,A.Leinse,R.G.Heideman,D.J.Blumenthal,and J.E.Bowers,“Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,”Opt.Express 19,24090-24101(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700