不同结构主动蓄热墙体日光温室传热特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristic of heat transfer for active heat storage wall with different structures in Chinese solar greenhouse
  • 作者:鲍恩财 ; 曹晏飞 ; 邹志荣 ; 张勇
  • 英文作者:Bao Encai;Cao Yanfei;Zou Zhirong;Zhang Yong;College of Horticulture,Northwest A&F University,Key Laboratory of Protected Horticultural Engineering in Northwest,Ministry of Agriculture and Rural Affairs;Institute of Agricultural Facilities and Equipment,Jiangsu Academy of Agricultural Science,Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River,Ministry of Agriculture and Rural Affairs;
  • 关键词:墙体 ; 温室 ; 温度 ; 主动蓄热 ; 主动蓄热循环系统 ; 传热
  • 英文关键词:walls;;greenhouse;;temperature;;active heat storage;;active heat storage circulation system;;heat transfer
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:西北农林科技大学园艺学院农业农村部西北设施园艺工程重点实验室;江苏省农业科学院农业设施与装备研究所农业农村部长江中下游设施农业工程重点实验室;
  • 出版日期:2019-02-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.355
  • 基金:陕西省重点研发计划项目(2018TSCXL-NY-05-05);; 宁夏回族自治区重点研发计划重大项目(2016BZ0901);; 陕西省科技统筹创新工程项目(2016KTCL02-02);; 江苏省农业科技自主创新资金(CX(16)1002)
  • 语种:中文;
  • 页:NYGU201903024
  • 页数:9
  • CN:03
  • ISSN:11-2047/S
  • 分类号:197-205
摘要
主动蓄热墙体日光温室具有良好的蓄能效果,对改善日光温室内的热环境起到了重要作用。但是对其如何有效地提高了温室的储能效率的特性和机理研究还有待进一步探索,以及如何进一步优化其性能,明确设计指标需要深入研究。该文在深入研究日光温室热量散失规律的基础上,构建了传统主动蓄热墙体日光温室(G1)、回填装配式主动蓄热墙体日光温室(G2),并试验测试了G1和G2主动蓄热循环系统的进出口温湿度、墙体表面热流密度、室内气温等参数,详细分析其传热规律和特性。结果表明:典型晴天(2017年12月31日)蓄热时段G1、G2主动蓄热循环系统的进、出口平均温差分别为10.2、11.6℃,平均蓄热热流密度分别为90.21、141.94 W/m2;典型阴天(2018年1月14日)放热时段G1、G2的进、出口平均温差分别为1.8、2.3℃,平均放热热流密度分别为7.48、5.66 W/m2。对墙体内主动蓄热循环系统的传热特性进行分析,G2的主动蓄热循环系统的蓄、放热量均较G1多。对后墙除主动蓄热系统以外的墙体外壁面被动传热特性进行分析,典型晴天蓄热阶段G1、G2整日的蓄热量分别比放热量多142.01、281.55 MJ;典型阴天放热阶段G1、G2的蓄热量分别比放热量少51.36、29.05 MJ,G2白天蓄热量较多、夜间放热量较少,表明G2墙体的长期储热能力较G1更高,更有利于温室在长时间低温寡照天气条件保持更稳定的室内温湿度环境。该文可为主动蓄热日光温室结构优化及热负荷设计提供理论和实践参考,并为主动蓄热日光温室的进一步发展奠定研究基础。
        Chinese solar greenhouse(hereafter CSG) is an efficient energy-saving greenhouse,and plays an important role in Chinese protected horticulture development.Active thermal storage back wall of CSG has excellent effect of energy storage.However,the hygrothermal performance of active thermal storage wall should be studied further.In this paper,heat transfer characteristics of active heat storage wall with different structures were studied.The CSG with traditional active heat storage wall(hereafter G1) and CSG with backfill-assembled active heat storage wall(hereafter G2) was introduced for experiment based on the operation experiments of heat loss of CSG.The humiture of inlet and outlet,the surface heat flux,temperature and humidity of experiment CSG had been tested.And the heat transfer characteristics were also studied.The results showed that the wind speed at outlet of G1 was 2.82 m/s,significantly higher than that of G2.However,the wind speed of inlet of G1 was smaller than that of G2.Under continuous sunny conditions,the average temperature difference between inlet and outlet of G1 and G2 were 10.2,11.6 ℃,respectively,in the case of active thermal storage conditions;and the average temperature difference between inlet and outlet of G1 and G2 were 3.2 and 3.0 ℃ respectively,in the case of heat release conditions.Under continuous cloudy conditions,the average temperature difference between inlet and outlet of G1 and G2 were 1.8 and 2.3 ℃ respectively,in the case of heat release conditions;and the exothermic heat flux of G1 and G2 were 7.48 and 5.66 W/m2,respectively.The heat transfer characteristic of heat storage circulation system of active thermal storage wall were be analyzed.Research shows that the average heat exchange amount of G1 and G2 were 120.36 and 215.27 MJ,respectively,under continuous sunny conditions.And the energy efficiency ratio of G1 and G2 were 15.48 and 49.83,respectively.Therefore,the heat storage amount of G2 had a dramatic improvement compared to G1.The G2 had a better energy saving effect.Under continuous cloudy conditions,the G2 released more heat compared to G1.In the typical sunny day,the passive heat storage amount of back wall of G2 was 46.9% higher than G1 during the heat storage process and it was similar for both G1 and G2 during the heat release process.In the typical cloudy day,the passive heat storage amount of back wall of G2 was 46.4% higher than G1 during the heat storage process while the passive heat release amount of back wall of G2 was 26.2% lower than that of G1.In typical sunny day,the heat storage contributions of G1 and G2 were 30.02% and 34.32%,respectively and the heat release contributions of G1 and G2 were 27.38% and 39.35%,respectively.In typical cloudy day,the heat release contributions of G1 and G2 were 36.41% and 44.01%,respectively.Our study showed that the G2 had higher long-term heat storage capacity,and G2 would facilitate to maintain inner humiture stability of CSG under the long-term low temperature and cloudy conditions.This paper can provide a theoretical and practical guidance to thermal load design of CSG with active thermal storage system.
引文
[1]佟国红,王铁良,白义奎,等.日光温室墙体传热特性的研究[J].农业工程学报,2003,19(3):186-189.Tong Guohong,Wang Tieliang,Bai Yikui,et al.Heat transfer property of wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2003,19(3):186-189.(in Chinese with English abstract)
    [2]李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能的影响[J].中国生态农业学报,2006,14(4):185-189.Li Xiaofang,Chen Qingyun.Effects of different wall materials on the performance of heat preservation of wall of sunlight greenhouse[J].Chinese Journal of Eco-Agriculture,2006,14(4):185-189.(in Chinese with English abstract)
    [3]籍秀红.日光温室墙体材料保温蓄热性能的测试与研究[D].北京:中国农业大学,2007.Ji Xiuhong.Test and Research on Insulation and Thermal Storage Performance of Solar Greenhouse Wall Materials[D].Beijing:China Agricultural University,2007.(in Chinese with English abstract)
    [4]李建设,白青,张亚红.日光温室墙体与地面吸放热量测定分析[J].农业工程学报,2010,26(4):231-236.Li Jianshe,Bai Qing,Zhang Yahong.Analysis on measurement of heat absorption and release of wall and ground in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2010,26(4):231-236.(in Chinese with English abstract)
    [5]管勇,陈超,凌浩恕,等.日光温室三重结构相变蓄热墙体传热特性分析[J].农业工程学报,2013,29(21):166-173.Guan Yong,Chen Chao,Ling Haoshu,et al.Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(21):166-173.(in Chinese with English abstract)
    [6]Ayyappan S,Mayilsamy K,Sreenarayanan V V.Performance improvement studies in a solar greenhouse drier using sensible heat storage materials[J].Heat and Mass Transfer,2016,52(3):459-467.
    [7]史宇亮,王秀峰,魏珉,等.日光温室土墙体温度变化及蓄热放热特点[J].农业工程学报,2016,32(22):214-221.Shi Yuliang,Wang Xiufeng,Wei Min,et al.Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):214-221.(in Chinese with English abstract)
    [8]李明,周长吉,周涛,等.日光温室土墙传热特性及轻简化路径的理论分析[J].农业工程学报,2016,32(3):175-181.Li Ming,Zhou Changji,Zhou Tao,et al.Heat transfer process of soil wall in Chinese solar greenhouse and its theoretical simplification methods[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(3):175-181.(in Chinese with English abstract)
    [9]何向丽,王健,郭世荣,等.拆装型黄麻纤维后墙温室墙体传热特性研究[J].南京农业大学学报,2018,41(1):172-180.He Xiangli,Wang Jian,Guo Shirong,et al.The study on the thermal characteristics in solar greenhouse with removable jute fiber back wall[J].Journal of Nanjing Agricultural University,2018,41(1):172-180.(in Chinese with English abstract)
    [10]张义,杨其长,方慧.日光温室水幕帘蓄放热系统增温效应试验研究[J].农业工程学报,2012,28(4):188-193.Zhang Yi,Yang Qichang,Fang Hui.Research on warming effect of water curtain system in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(4):188-193.(in Chinese with English abstract)
    [11]Fang H,Yang Q,Zhang Y,et al.Performance of a solar heat collection and release system for improving night temperature in a Chinese solar greenhouse[J].Applied Engineering in Agriculture,2015,31(2):283-289.
    [12]李文,杨其长,张义,等.日光温室主动蓄放热系统应用效果研究[J].中国农业气象,2013,34(5):557-562.Li Wen,Yang Qichang,Zhang Yi,et al.Application effects of active heat storage and release system in a Chinese solar greenhouse[J].Chinese Journal of Agrometeorology,2013,34(5):557-562.(in Chinese with English abstract)
    [13]梁浩,方慧,杨其长,等.日光温室后墙蓄放热帘增温效果的性能测试[J].农业工程学报,2013,29(12):187-193.Liang Hao,Fang Hui,Yang Qichang,et al.Performance testing on warming effect of heat storage-release curtain of back wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(12):187-193.(in Chinese with English abstract)
    [14]方慧,张义,杨其长,等.日光温室金属膜集放热装置增温效果的性能测试[J].农业工程学报,2015,31(15):177-182.Fang Hui,Zhang Yi,Yang Qichang,et al.Performance testing on warming effect of heat storage-release metal film in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(15):177-182.(in Chinese with English abstract)
    [15]凌浩恕,陈超,陈紫光,等.日光温室带竖向空气通道的太阳能相变蓄热墙体体系[J].农业机械学报,2015,46(3):336-343.Ling Haosu,Chen Chao,Chen Ziguang,et al.Performance of phase change material wall with vertical air channels integrating solar concentrators[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):336-343.(in Chinese with English abstract)
    [16]陈紫光.基于相变蓄热墙体的太阳能空气集热器传热性能研究[D].北京:北京工业大学,2014.Chen Ziguang.Heat Transfer Performance of Solar Air Collector Based on Phase Change Thermal Storage Wall[D].Beijing:Beijing Industry University,2014.(in Chinese with English abstract)
    [17]陈超,张明星,郑宏飞,等.日光温室用双集热管多曲面槽式空气集热器性能试验[J].农业工程学报,2017,33(15):245-252.Chen Chao,Zhang Mingxing,Zheng Hongfei,et al.Thermal performance experiment for multiple clamber trough solar air collector with dual collector tubes for solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(15):245-252.(in Chinese with English abstract)
    [18]张勇,邹志荣.一种蓄热后墙的日光温室:102630526[P].2012-08-15.
    [19]张勇,高文波,邹志荣.主动蓄热后墙日光温室传热CFD模拟及性能试验[J].农业工程学报,2015,31(5):203-211.Zhang Yong,Gao Wenbo,Zou Zhirong.Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(5):203-211.(in Chinese with English abstract)
    [20]高文波,张勇,邹志荣,等.主动采光蓄热型日光温室性能初探[J].农机化研究,2015,37(7):181-186.Gao Wenbo,Zhang Yong,Zou Zhirong,et al.Preliminary study on performance in an active lighting and heating storage type solar greenhouse[J].Journal of Agricultural Mechanization Research,2015,37(7):181-186.(in Chinese with English abstract)
    [21]鲍恩财,朱超,曹晏飞,等.固化沙蓄热后墙日光温室热工性能试验[J].农业工程学报,2017,33(9):187-194.Bao Encai,Zhu Chao,Cao Yanfei,et al.Thermal performance test of solidified sand heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(9):187-194.(in Chinese with English abstract)
    [22]王昭,陈振东,邹志荣,等.青海型主动蓄热日光温室应用性能分析[J].中国农业大学学报,2017,22(8):116-123.Wang Zhao,Chen Zhendong,Zou Zhirong,et al.Application performance analysis on active heating storage greenhouse of Qinghai style[J].Journal of China Agricultural University,2017,22(8):116-123.(in Chinese with English abstract)
    [23]鲍恩财,申婷婷,张勇,等.装配式主动蓄热墙体日光温室热性能分析[J].农业工程学报,2018,34(10):178-186.Bao Encai,Shen Tingting,Zhang Yong,et al.Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(10):178-186.(in Chinese with English abstract)
    [24]张勇,邹志荣.一种蓄热后墙的日光温室:102630526[P].2012-08-15.
    [25]张勇,邹志荣.一种可变倾角采光面的日光温室.101116408[P].2008-02-06.
    [26]张勇,邹志荣.一种主动采光及固化土自主蓄热后墙日光温室:103416261[P].2013-12-04.
    [27]张勇,邹志荣,汤青川.一种智能光伏温室及其多功能骨架:205865339[P].2017-01-11.
    [28]鲍恩财,邹志荣,张勇.日光温室墙体用相变固化土性能测试及固化机理[J].农业工程学报,2017,33(16):203-210.Bao Encai,Zou Zhirong,Zhang Yong.Performance test and curing mechanism of phase change cured soil for solar greenhouse walls[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(16):203-210.(in Chinese with English abstract)
    [29]张勇.一种温室全热交换除湿风道管系统:206452876[P].2017-09-01.
    [30]张勇.一种基于相变固化土的夯土墙成型方法与装置:106639005[P].2017-05-10.
    [31]张勇.一种基于张弦梁的夯土墙成型装置:206888272[P].2018-01-16.
    [32]邹志荣,邵孝侯.设施农业环境工程学[M].北京:中国农业出版社,2008.
    [33]马承伟,苗香雯.农业生物环境工程[M].北京:中国农业出版社,2005.
    [34]陈超.现代日光温室建筑热工设计理论与方法[M].北京:科学出版社,2017.
    [35]赵淑梅,庄云飞,郑可欣,等.日光温室空气对流蓄热中空墙体热性能试验[J].农业工程学报,2018,34(4):223-231.Zhao Shumei,Zhuang Yunfei,Zheng Kexin,et al.Thermal performance experiment on air convection heat storage wall with cavity in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(4):223-231.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700