车用Al-Cu-Mg合金组织演变的时效过程调节方法分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Aging Process Adjustment Method for Microstructure Evolution of Automotive Al-Cu-Mg Alloy
  • 作者:张俊峰 ; 邓璘
  • 英文作者:ZHANG Junfeng;DENG Lin;School of Automotive Engineering, Chongqing Vocational College of Electronic Engineering;
  • 关键词:铝合金 ; 时效 ; 组织 ; 性能
  • 英文关键词:aluminum alloy;;aging;;microstructure;;property
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:重庆电子工程职业学院汽车工程学院;
  • 出版日期:2019-03-27 16:52
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.508
  • 基金:重庆市教委科学技术研究项目(KJ1503005)
  • 语种:中文;
  • 页:SJGY201906046
  • 页数:3
  • CN:06
  • ISSN:61-1133/TG
  • 分类号:200-202
摘要
为了改善Al-Cu-Mg铝合金在时效过程组织的演变,探讨了空位调节、外应力/应变调节以及多级时效调节技术。结果表明:空位调节产生的位错环促进了Cu与Mg原子的扩散过程并生成S相;外应力/应变调节后,合金中的析出颗粒变得更加细小,并且当应变量或应变速率增加后,合金的时效析出过程变得更加容易;多级时效调节能够有效改善合金强度及其抗应力腐蚀性能。
        In order to improve the microstructure evolution of Al-Cu-Mg aluminum alloy during aging, the techniques of vacancy adjustment, external stress/strain adjustment and multistage aging adjustment were discussed. The results show that,the dislocation ring produced by vacancy regulation promotes the diffusion of Cu and Mg atoms and generates S phase. After the stress/strain adjustment, the precipitated particles in the alloy become smaller, and with the strain or strain rate increasing,the aging precipitation process of the alloy becomes easier. The multistage aging adjustment can effectively improve the strength and stress corrosion resistance of the alloy.
引文
[1]Hu S Y,Baker M I,Stan M,et al.Atomistic calculations of interfacial energies,nucleus shape and size ofθ'precipitates in Al-Cu alloys[J].Acta Mater,2006,54(18):4699-4707.
    [2]Wang S C,Starink M J.The assessment of GPB2/S''structures in Al-Cu-Mg alloys[J].Mater Sci.Eng.A,2004,386(1/2):156-163.
    [3]Ralston K D,Birbilis N,Weyland M,et al.The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys[J].Acta Mater,2010,58(18):5941-5948.
    [4]Buha J,Lumley R N,Crosky A G.Secondary ageing in an aluminum alloy 7050[J].Mater Sci.Eng.A,2008,492(12):1-10.
    [5]Marioara C D,Lefebvre W,Andersen S,et al.Atomic structure of hardening precipitates in an Al-Mg-Zn-Cu alloy determined by HAADF-STEM and first-principles calculations:relation toη-Mg Zn2[J].J Mater Sci.,2013,48(10):3638-3651.
    [6]Marceau R K W,Sha G,Lumley R N,et al.Evolution of solute clustering in Al-Cu-Mg alloys during secondary aging[J].Acta Mater,2010,58(5):1795-1805.
    [7]Eto T,Sato A,Mori T.Stress-oriented precipitation of G.P.Zones andθ'in an Al-Cu alloy[J].Acta Metallurgica,1987,26(3):499-508.
    [8]Deschamps A,Bley F,Livet F,et al.In-situ small-angle X-ray scattering study of dynamic precipitation in an Al-Zn-MgCu alloy[J].Philos.Mag.,2003,83(6):677-692.
    [9]Fribourg G,Bréchet Y,Deschamps A,et al.Microstructure based modeling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy[J].Acta Mater,2011,59(9):3621-3635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700