温度对Ga掺杂ZnS纳米结构的形貌及光致发光性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Temperature on Morphology and Photoluminescent Properties of Ga-doped ZnS Nanostructures
  • 作者:王坤鹏 ; 章海霞 ; 翟光美 ; 姜武 ; 翟化松 ; 许并社
  • 英文作者:WANG Kun-peng;ZHANG Hai-xia;ZHAI Guang-mei;JIANG Wu;ZHAI Hua-song;XU Bing-she;Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology;Shanxi Research Centre of Advanced Materials Science and Technology;College of Materials Science and Technology,Taiyuan University of Technology;
  • 关键词:ZnS纳米结构 ; Ga掺杂 ; 光致发光 ; 化学气相沉积法 ; 生长机理
  • 英文关键词:ZnS nanostructure;;Ga doping;;photoluminescence;;chemical vapor deposition;;growth mechanism
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:太原理工大学新材料界面科学与工程教育部重点实验室;山西省新材料工程技术研究中心;太原理工大学材料科学与工程学院;
  • 出版日期:2014-01-15
  • 出版单位:人工晶体学报
  • 年:2014
  • 期:v.43;No.183
  • 基金:国家自然科学基金(51002102);; 山西省科技创新重点团队项目(2012041011)
  • 语种:中文;
  • 页:RGJT201401008
  • 页数:7
  • CN:01
  • ISSN:11-2637/O7
  • 分类号:40-46
摘要
分别以Zn粉和S粉为原材料,Ga为掺杂剂,Au纳米颗粒为催化剂,采用低温化学气相沉积法(CVD),在Si(100)衬底上制备了Ga掺杂的ZnS纳米结构。利用X射线衍射仪(XRD)、能量弥散X-ray谱(EDS)、场发射扫描电子显微镜(SEM)和光致发光光谱(PL)等测试手段对样品的结构、成分、形貌和发光性能进行了分析。结果表明:随着温度的升高(450~550℃),Ga掺杂ZnS纳米结构的形貌发生了从蠕虫状纳米线到光滑纳米线再到纳米棒的演变,所制备的Ga掺杂的ZnS纳米结构均为六方纤锌矿结构,分别在波长为336 nm和675 nm处存在一个较强的近带边紫外发射峰和一个Ga掺杂引起的微弱红光峰,而其它发光峰均是缺陷引起的。此外,本文还对Ga掺杂ZnS纳米结构的形成过程进行了探讨,并提出了可能的形成机理。
        Ga-doped ZnS nanostructures were prepared on Si( 100) substrate by low-temperature chemical vapor deposition( CVD),using S powder and Zn powder as raw material,Ga as dopant and Au nanoparticles as catalyst. The structure,composition,morphology and luminescent properties of ZnS samples were analyzed by X-ray diffraction( XRD),energy dispersive X-ray spectroscopy( EDS),field emission scanning electron microscopy( SEM) and photoluminescence( PL) spectroscopy,respectively. The results indicate that with the increase of the temperature,the morphologies of Ga-doped ZnS evolved from worm-like nanowires to smooth nanowires and then to nanorods. All samples were hexagonal wurtzite,and showed a larger near-band-edge UV emission peak of 336 nm and a weak red light emission peak of 675 nm,while all other emission peaks were caused by defects of Ga doping. Furthermore,thepossible growth mechanism of Ga-doped ZnS nanostructures were proposed on the basis of experimental observations and analysis.
引文
[1]Fang X S,Bando Y,Liao M Y,et al.Single-crystalline ZnS Nanobelts as Ultraviolet-Light Sensors[J].Adv.Mater.,2009,21(20):2034-2039.
    [2]Ishizumi A,White C W,Kanemitsu Y.Space-resolved Photoluminescence of ZnS∶Cu,Al Nanocrystals Fabricated by Sequential Ion Implantation[J].Appl.Phys.Lett.,2004,84(13):2397-2399.
    [3]Prathap P,Revathi N,Subbaiah Y P V,et al.Preparation and Characterization of Transparent Conducting ZnS∶Al Films[J].Solid State Sci.,2009,11(1):224-232.
    [4]魏智强,张歌,闫晓燕,等.溶剂热法制备双螺旋ZnS纳米结构研究[J].人工晶体学报,2012,41(1):90-93.Wei Z Q,Zhang G,Yan X Y,et al.Preparation of Helical Nanostructure ZnS by Solvothermal Method[J].Journal of Synthetic Crystals,2012,41(1):90-93.
    [5]Wang Z W,Daemen L L,Zhao Y S,et al.Morphology-tuned Wurtzite-type ZnS Nanobelts[J].Nat.Mater.,2005,4:922-927.
    [6]王坤鹏,翟化松,章海霞,等.Mn2+掺杂对低温生长ZnS的形貌及光致发光性能的影响[J].高等学校化学学报,2013,34(9):2040-2045.Wang K P,Zhai H S,Zhang H X,et al.Effects of Mn2+on Morphology and Photoluminescence of ZnS Grown at Low-temperature[J].Chem.J.Chinese Universities,2013,34(9):2040-2045.
    [7]Yin L W,Bando Y,Zhan J H,et al.Self-assembled Highly Faceted Wurtzite-type ZnS Single-crystalline Nanotubes with Hexagonal Crosssections[J].Adv.Mater.,2005,17(16):1972-1977.
    [8]Lu M Y,Lu M P,Chung Y A,et al.Intercrossed Sheet-like Ga-doped ZnS Nanostructures with Superb Photocatalytic Actvitiy and Photoresponse[J].J.Phys.Chem.C,2009,113(29):12878-12882.
    [9]Kar S,Biswas S.White Light Emission from Surface-oxidized Manganese-doped ZnS Nanorods[J].J.Phys.Chem.C,2008,112(30):11144-11149.
    [10]Gautam U K,Bando Y,Zhan J H,et al.Ga-doped ZnS Nanowires as Precursors for ZnO/ZnGa2O4Nanotubes[J].Adv.Mater.,2008,20(4):810-814.
    [11]Chen Y C,Wang C H,Lin H Y,et al.Growth of Ga-doped ZnS Nanowires Constructed by Self-assembled Hexagonal Platelets with Excellent Photocatalytic Properties[J].Nanotechnology,2010,21(45):455604.
    [12]周英智,刘峥,袁帅.脉冲电沉积结合水热法制备ZnS纳米条及其光学性质的研究[J].人工晶体学报,2012,41(5):1381-1386.Zhou Y Z,L Z,Y S.Preparation and Optical Properties of ZnS Nanobars by Pulse Electrodeposition Combined with Hydrothermal Method[J].Journal of Synthetic Crystals,2012,41(5):1381-1386.
    [13]Wagner R S,Ellis W C.Vapor-Liquid-Solid-Mechanism of Single Crystal Growth[J].Appl.Phys.Lett.,1964,4(5):89-90.
    [14]Fang X S,Ye C H,Peng X S,et al.Large-scale Synthesis of ZnS Nanosheets by the Evaporation of ZnS Nanopowders[J].J.Cryst.Growth,2004,263(1-4):263-268.
    [15]Sotillo B,Fernandez,Piqueras J.Thermal Growth and Luminescence of Wurtzite ZnS Nanowires and Nanoribbons[J].J.Cryst.Growth,2012,348(1):85-90.
    [16]Biswas S,Ghoshal T,Kar S,et al.ZnS Nanowire Arrays:Synthesis,Optical and Field Emission Properties[J].Cryst.Growth Des.,2008,8(7):2171-2176.
    [17]Zhuo R F,Feng H T,Yan D,et al.Rapid Growth and Photoluminescence Properties of Doped ZnS One-dimensional Nanostructures[J].J.Cryst.Growth,2008,310(13):3240-3246.
    [18]Lu H Y,Chu S Y,Chang C C.Synthesis and Optical Properties of Well-aligned ZnS Nanowires on Si Substrate[J].J.Cryst.Growth,2005,280(1-2):173-176.
    [19]Chen Y C,Wang C H,Chen W T,et al.Undoped and Ga-doped Hexagonal Platelet Interconnected ZnS Nanowires:Cathodoluminescence and Metal-semiconductor Electron Transport Transition[J].Scripta.Mater.,2011,64(8):761-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700