基于ZnO-CuO纳米线结构的新型光电器件
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A novel photoelectric device based on ZnO-CuO nanowire structure
  • 作者:袁晓贤 ; 苏霜萍 ; 单新治 ; 苗玉 ; 隋国荣
  • 英文作者:YUAN Xiao-xian;SU Shuang-ping;SHAN Xin-zhi;MIAO Yu;SUI Guo-rong;Engineering Research Center of Optical Instrument and System,Ministry of Education of China,Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology;
  • 关键词:原子沉积法 ; 水浴法 ; ZnO-CuO纳米线 ; 整流特性 ; 光致发光
  • 英文关键词:ALD method;;immersion method;;ZnO-CuO nanowire;;rectification characteristics;;photoluminescence(PL)
  • 中文刊名:GDZJ
  • 英文刊名:Journal of Optoelectronics·Laser
  • 机构:上海理工大学教育部光学仪器与系统工程研究中心上海市现代光学系统重点实验室;
  • 出版日期:2016-02-15
  • 出版单位:光电子·激光
  • 年:2016
  • 期:v.27;No.248
  • 基金:国家重点基础研究发展计划(2015CB352001);; 国家自然科学基金(61205094);; 上海市重点学科建设(S30502);; 校培育计划(13XGM11)资助项目
  • 语种:中文;
  • 页:GDZJ201602001
  • 页数:5
  • CN:02
  • ISSN:12-1182/O4
  • 分类号:5-9
摘要
为了获得高效的整流器件和微型短波长的发光器件,采用原子层沉积(ALD)法和水浴法合成了具有ZnO-CuO的结构器件。对制备的样品进行了光学和电学特性的检测,获得了22.79的整流比和17.69的理想因子,且门限电压和整流比等特性随CuO厚度增加而减小。在光致发光(PL)特性上,具有显著的由ZnO带电激发的385nm紫外光波峰,同时伴有由深能级散射激发的572nm的可见光波峰,且随着CuO厚度的增加紫外光波峰减小,可见光峰变大。实验结果表明,本文制备的器件可以应用在纳米型二极管、光电探测器以及微型光源等领域。
        To obtain the efficient rectification device and the mini ultra-short wavelength luminescent device,a novel device based on the ZnO-CuO structure is fabricated by the atomic layer deposition(ALD)method and immersion method.By the experiments,we tested the I-Vcharacteristics curve and Log I-V characteristics.By detecting the electrical and optical characteristics of the device,the results get the rectification ratio of 22.79 and the ideality factor of 17.69.Simultaneously,the threshold voltage and rectification ratio decrease with increasing the thickness of CuO.To photoluminescence(PL)characteristics,the device obtains the remarkable energy peak at the wavelength of 385 nm,and follows a feeble energy peak at the wavelength of 572 nm.Here,the peak of near-band edge emission reduces with increasing the thickness of CuO,and the peak of deep energy level scattering enlarges.The device has the potential applications in the fields of the superior performance nano diode,field-effect tube and micro-photoluminescent device.
引文
[1]Liu B,Aydil E S.Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells[J].J.Am.Chem.Soc.,2009,131:3985-3990.
    [2]Comini E,Baratto C,Faglia G,et al.Quasi-one dimensional metal oxide semiconductors:preparation,characterization and application as chemical sensors[J].Prog.Mater.Sci.,2009,54:1-67.
    [3]Hong Y J,Jung H S,Yoo J,et al.Shape-controlled nanoarchitectures using nanowalls[J].Adv.Mater.,2009,21:222-226.
    [4]Wang Y,Takahashi K,Lee K H,et al.Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation[J].Adv.Funct.Mater.,2006,16:1133-1144.
    [5]Li Y,Koshizaki N,Cai W.Periodic one-dimensional nanostructured arrays based on colloidal templates,applications,and devices[J].Coord.Chem.Rev.,2011,255:357-373.
    [6]Sambhaji S Warule,Nilima S Chaudhari,Jalindar D Ambekar,et al.Hierarchical nanostructured ZnO with nanorods engendered to nanopencils and pin-cushion cactus with its field emission study[J].ACS Appl.Mater.Interfaces,2011,3(9):3454-3462.
    [7]Vaishali R Shinde,Tanaji P Gujar,Takeshi Noda,et al.Growth of shape-and size-selective zinc oxide nanorods by a microwave-assisted chemical bath deposition method:effect on photocatalysis properties[J].Chem.Eur.J.,2010,16(34):10569-10575.
    [8]Li L,Koshizaki N.Vertically aligned and ordered hematite hierarchical columnar arrays for applications in field-emission[J].J.Mater.Chem.,2010,20(15):2972-2978.
    [9]Yi G C,Wang C,Park W I.ZnO nanorods:synthesis,characterization and applications[J].Semicond.Sci.Technol.2005,20:22-34.
    [10]Ma Y,Du G T,Yang S R,et al.Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy[J].J.Appl.Phys,2004,95(11):6268-6272.
    [11]Xiong G,Wilkinson J,Mischuch B,et al.Control of p-and n-type conductivity in sputter deposition of undoped ZnO[J].Appl.Phys.Lett.,2002,80(7):1195-1197.
    [12]Rakhshani A E.Preparation,characteristics and photovoltaic properties of cuprous-oxide-a review[J].Solid-State Electron.,1986,29(1):7-17.
    [13]Balamurugan B,Mehta B R.Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation[J].Thin Solid Films,2001,396(1-2):90-96.
    [14]Hsu C L,Lin Y R,Chang S J,et al.Vertical ZnO/ZnGa2O4core-shell nanorods grown on ZnO/glass templates by reactive evaporation[J].Chem.Phys.Lett.,2005,411(1):221-224.
    [15]Samarasekara P,Kumara N T R N,Yapa N U S,et al.Sputtered copper oxide(CuO)for gas sensor devices[J].J.Phys.Condens.Matter.,2006,18(8):2417-2420.
    [16]Armelao L,Barreca D,Bertapelle M,et al.A sol-gel approach to nanophasic copper oxide thin films[J].Thin Solid Films,2003,442(1):48-52.
    [17]LIAO Kuo-ting.Fabrication and characterization of ZnO/CuO core-shell nanowire arrays[D].Master′s Theses,2011,152.
    [18]Wu J K,Chen W J,Chang Y H,et al.Fabrication and phtotoresponse of ZnO nanowires/CuO coaxial heterojunction[J].Nanoscale Research Letters,2013,8:387-391.
    [19]Wang X B,Song C,Geng K W,et al.Photoluminescence and raman scattering of Cu-doped ZnO films prepared by magnetron sputtering[J].Applied surface science,2007,253(16):6905-6909.
    [20]Chen Y L,Shen Z R,Jia Q Q,et al.A CuO-ZnO nanostructured p-n junction sensor for enhanced N-butanol detection[J].RSC Advances,2016,8:2504-2511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700