溶胶-凝胶法制备Ni_xZn_(1-x)S薄膜的磁性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetic analysis of Ni_xZn_(1-x)S films prepared by sol-gel method
  • 作者:薛红艳
  • 英文作者:XUE Hong-Yan;Department of Mechanical and Electrical Engineering,Yongcheng Vocational College;
  • 关键词:ZnS薄膜 ; Ni掺杂 ; 溶胶-凝胶法 ; 磁性 ; 缺陷
  • 英文关键词:ZnS films;;Ni doping;;Sol-gel method;;Magnetic property;;Defect
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:永城职业学院机电工程系;
  • 出版日期:2018-10-22 09:36
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(No.61504029)
  • 语种:中文;
  • 页:YZYF201901022
  • 页数:4
  • CN:01
  • ISSN:51-1199/O4
  • 分类号:140-143
摘要
由于离子掺杂可有效改善ZnS薄膜的特性,故本研究以溶胶-凝胶法制备Ni_xZn_(1-x)S薄膜(x=0.00, 0.05, 0.10, 0.15),并利用XRD、PL光谱及磁性测试仪分析Ni掺杂对其磁性的影响.研究结果表明Ni掺杂量x为0.00、0.05、0.10及0.15时薄膜的饱和磁化强度随分别为6.59×10~(-6) emu/cm~3、4.61×10~(-6) emu/cm~3、3.88×10~(-6) emu/cm~3及3.52×10~(-6) emu/cm~3,即饱和磁化强度随x增加而减小. PL分析表明缺陷发光强度随x增加而减弱,能隙发光强度则随之增强,结合束缚极化子理论便知饱和磁化强度会随x增加而减小. XRD分析表示结晶品质随x增加而变好,说明薄膜中的缺陷数量会随x增加而减少,使得磁信号无法通过缺陷方式传导而导致其磁性减弱.
        Ion doping can effectively improve the properties of ZnS films and then the Ni_xZn_(1-x)S films(x=0.00, 0.05, 0.10, 0.15) were prepared by sol-gel method. The effects of Ni doping on magnetic property of the films were analyzed by XRD, PL spectra and magnetic tester. The results showed that the saturation magnetizations of the films are 6.59×10~(-6) emu/cm~3, 4.61×10~(-6) emu/cm~3, 3.88×10~(-6) emu/cm~3 and 3.52×10~(-6) emu/cm~3, respectively when Ni doping amounts x are 0.00, 0.05, 0.10 and 0.15. That is to say, the saturation magnetization decreases with x increasing. PL analysis showed that the luminous intensity of defects decreases and hence the energy gap luminescence intensity increases with the increase of x. Combined with the bound polaron theory, the saturation magnetization will decrease with the increase of x. XRD analysis showed that the crystal quality is better with x increasing, indicating that the number of defects in the films will decrease with the increase of x, so that the magnetic signal cannot be conducted through the defect mode, resulting in the magnetic weakening.
引文
[1] Jafarov M A, Nasirov E F, Jafarli R S. Growth and optical properties of nanostructured ZnS:Mn films [J]. Inorg. Mater., 2017, 53: 39.
    [2] Li F S, Yu X Y, Yang H, et al. Study of effects of pressure on electronic structure and electrical properties of ZnS [J]. J. At. Mol. Phys., 2016, 33: 745 (in Chinese) [李凡生, 余小英, 杨欢, 等. ZnS电子结构及电性能应力效应的研究 [J]. 原子与分子物理学报, 2016, 33: 745]
    [3] Zhong F, Qin Y E, Liu P Y, et al. Organic light-emitting diodes with nano-ZnS thin films as hole buffer layer by RF magnetron sputtering [J]. Chin. J. Lumin., 2006, 27: 877.
    [4] Lu L F, Xu Z, Zhang F J, et al. Using ZnS nanostructured thin films to enhance light extraction from organic light-emitting diodes [J]. Energy & Fuels, 2013, 24: 3743.
    [5] Madugu M L, Olusola I O, Echendu O K, et al. Intrinsic doping in electrodeposited ZnS thin films for application in large-area optoelectronic devices [J]. J. Electron. Mater., 2016, 45: 2710.
    [6] Zanettini S, Bissoli F, Nasi L, et al. Low temperature pulsed electron deposition and characterization of ZnS films for application in solar cells [J]. Crystal Res. Technol., 2011, 46: 881.
    [7] Boutaud G, Cranton W M, Koutsogeorgis D C, et al. Growth optimisation of ZnS:Mn thin film phosphors for high intensity miniature electroluminescent displays [J]. Mater. Sci. Eng. B, 2009, 165: 202.
    [8] Liu M D, Liu G, Wu X. Research of semiconductor ZnS one-dimensional nanostructures [J]. China Ceram. Industry, 2009, 16: 32 (in Chinese). [刘美多, 刘刚, 武祥. 气相法制备半导体ZnS一维纳米结构的研究进展[J]. 中国陶瓷工业, 2009, 16: 32]
    [9] Gawai U P, Dole B N. Local structural studies on Co doped ZnS nanowires by synchrotron X-ray atomic pair distribution function and micro-Raman shift [J]. RSC Adv., 2017, 7: 37402.
    [10] Goktas A, Aslan F, Tumbul A. Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties [J]. J. Sol-Gel Sci. Technol., 2015, 75: 45.
    [11] Zaware R V, Wagh B G. The influence of precursor ratio on structure, morphology and resistivity of thin ZnS films sprayed by improved method [J]. Arab. J. Sci. Eng., 2015, 40: 2049.
    [12] Li Z, Huang S H, Hong R J. The structure and properties of ZnS films prepared by chemical bath deposition [J]. Acta Sci. Nat. Univ. Sunyatseni, 2017, 56: 78 (in Chinese) [李仲, 黄赛濠, 洪瑞江. 化学水浴法制备ZnS薄膜的结构与性能[J]. 中山大学学报:自然科学版, 2017, 56: 78]
    [13] Akhtar M S, Riaz S, Naseem S. Optical properties of sol-gel deposited ZnS thin films: spectroscopic ellipsometry [J]. Mater. Today Proc., 2015, 2: 5497.
    [14] Coey J M, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nature Mater., 2005, 4: 173.
    [15] Xie J M, Chen H X. Researches on the stability of V-doped ZnS clusters [J]. J. At. Mol. Phys., 2016, 33: 627 (in Chinese) [谢建明, 陈红霞. 钒掺杂硫化锌团簇稳定性和磁性质研究 [J]. 原子与分子物理学报, 2016, 33: 627]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700