The effects of electrochemical oxidation on in-vivo fluorescence and toxin content in Microcystis aeruginosa culture
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effects of electrochemical oxidation on in-vivo fluorescence and toxin content in Microcystis aeruginosa culture
  • 作者:ROZINA ; Tinkara ; ELER?EK ; Tina ; Maja ; ZUPAN?I? ; JUSTIN ; MEGLI? ; Andrej ; LE?TAN ; Domen ; SEDMAK ; Bojan
  • 英文作者:ROZINA Tinkara;ELER?EK Tina;Maja ZUPAN?I? JUSTIN;MEGLI? Andrej;LE?TAN Domen;SEDMAK Bojan;Envit d.o.o.;Department of Genetic Toxicology and Cancer Biology, National Institute of Biology;Arhel d.o.o.;Biotechnical Faculty, University of Ljubljana;Centre for Soil and Environmental Sciences, Biotechnical Faculty, University of Ljubljana;
  • 英文关键词:Microcystis aeruginosa;;electrochemical oxidation;;cyanotoxins;;fluorescence;;chlorophyll α;;phycocyanin;;boron-doped diamond electrode
  • 中文刊名:HYFW
  • 英文刊名:海洋湖沼学报(英文)
  • 机构:Envit d.o.o.;Department of Genetic Toxicology and Cancer Biology, National Institute of Biology;Arhel d.o.o.;Biotechnical Faculty, University of Ljubljana;Centre for Soil and Environmental Sciences, Biotechnical Faculty, University of Ljubljana;
  • 出版日期:2018-07-15
  • 出版单位:Journal of Oceanology and Limnology
  • 年:2018
  • 期:v.36
  • 基金:Supported by the ARRS Project L1-5456(Control of Harmful Cyanobacteria Bloom in Fresh-Water Bodies);; LIFE+Project:LIFE12 ENV/SI/00083 LIFE Stop CyanoBloom
  • 语种:英文;
  • 页:HYFW201804007
  • 页数:12
  • CN:04
  • ISSN:37-1518/P
  • 分类号:65-76
摘要
The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo detection to obtain a real-time response to their presence, as well as the information about their physiological state after the applied treatment. In-vivo fluorescence measurements of photosynthetic pigments have proved to be effective for quantitative and qualitative detection of phytoplankton in a water environment. In the experiment, chlorophyll and phycocyanin fluorescence sensors were used concurrently to detect stress caused by electrochemical oxidation applying an electrolytic cell equipped with borondoped diamond electrodes on a laboratory culture of cyanobacteria Microcystis aeruginosa PCC 7806. The inflicted injuries were reflected in a clear transient increase in the phycocyanin fluorescence signal(for 104 %? 43%) 24 h after the treatment, which was not the case for the chlorophyll fluorescence signal. In the next 72 h of observation, the fluorescence signals decreased(on 40% of the starting signal) indicating a reduction of cell number, which was confirmed by cell count(24% reduction of the starting concentration) and analysis of extracted chlorophyll and phycocyanin pigment. These results demonstrate the viability of the combined application of two sensors as a useful tool for in-vivo detection of induced stress, providing real-time information needed for the evaluation of the efficiency of the in-lake treatment and decision upon the necessity of its repetition. The electrochemical treatment also resulted in a lower free microcystins concentration compared to control.
        The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo detection to obtain a real-time response to their presence, as well as the information about their physiological state after the applied treatment. In-vivo fluorescence measurements of photosynthetic pigments have proved to be effective for quantitative and qualitative detection of phytoplankton in a water environment. In the experiment, chlorophyll and phycocyanin fluorescence sensors were used concurrently to detect stress caused by electrochemical oxidation applying an electrolytic cell equipped with borondoped diamond electrodes on a laboratory culture of cyanobacteria Microcystis aeruginosa PCC 7806. The inflicted injuries were reflected in a clear transient increase in the phycocyanin fluorescence signal(for 104 %? 43%) 24 h after the treatment, which was not the case for the chlorophyll fluorescence signal. In the next 72 h of observation, the fluorescence signals decreased(on 40% of the starting signal) indicating a reduction of cell number, which was confirmed by cell count(24% reduction of the starting concentration) and analysis of extracted chlorophyll and phycocyanin pigment. These results demonstrate the viability of the combined application of two sensors as a useful tool for in-vivo detection of induced stress, providing real-time information needed for the evaluation of the efficiency of the in-lake treatment and decision upon the necessity of its repetition. The electrochemical treatment also resulted in a lower free microcystins concentration compared to control.
引文
Antoniou M G,Shoemaker J A,De La Cruz A A,Dionysiou DD.2008.Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR.Environmental Science&Technology,42(23):8 877-8 883.
    Barrington D J,Ghadouani A.2008.Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater.Environmental Science&Technology,42(23):8 916-8 921,https://doi.org/10.1021/es801717y.
    Barrington D J,Reichwaldt E S,Ghadouani A.2013.The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems.Ecological Engineering,50:86-94,https://doi.org/10.1016/j.ecoleng.2012.04.024.
    Bastien C,Cardin R,Veilleuxé,Deblois C,Warren A,Laurion L.2011.Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria.Journal of Environment Monitoring,13(1):110-118,https://doi.org/10.1039/c0em00366b.
    Beutler M,Wiltshire K H,Meyer B,Moldaenke C,Lüring C,Meyerhofer M,Hansen U P,Dau H.2002.A fluorometric method for the differentiation of algal populations in-vivo and in situ.Photosynthesis Research,72(1):39-53,https://doi.org/10.1023/a:1016026607048.
    Boopathi T,Ki J S.2014.Impact of environmental factors on the regulation of cyanotoxin production.Toxins,6(7):1 951-1 978,https://doi.org/10.3390/toxins6071951.
    Brooks B W,Lazorchak J M,Howard M D A,Johnson M V V,Morton S L,Perkins D A K,Reavie E D,Scott G I,Smith SA,Steevens J A.2016.Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?Environmental Toxicology and Chemistry,35(1):6-13,https://doi.org/10.1002/etc.3220.
    Bryant D A.1987.The cyanobacterial photosynthetic apparatus:comparison to those of higher plants and photosynthetic bacteria.Canadian Bulletin of Fisheries and Aquatic Science,214:423-500.
    Cabeza,A,Urtiaga A M,Ortiz I.2007.Electrochemical treatment of landfill leachates using a boron-doped diamond anode.Industrial&Engineering Chemistry Research,46(5):1 439-1 446,https://doi.org/10.1021/ie061373x.
    Campbell D,Hurry V,Clarke A K,Gustafsson P,Oquist G.1998.Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation.Microbiology and Molecular Biology Reviews,62(3):667-683.
    Carmichael W W.1992.Cyanobacteria secondary metabolitesthe cyanotoxins.Journal of Applied Bacteriology,72(6):445-459,https://doi.org/10.1111/j.1365-2672.1992.tb01858.x.
    Chang D W,Hobson P,Burch M,Lin T F.2012.Measurement of cyanobacteria using in-vivo fluoroscopy-effect of cyanobacterial species,pigments,and colonies.Water Research,46(16):5 037-5 048,https://doi.org/10.1016/j.watres.2012.06.050.
    Chen G H.2004.Electrochemical technologies in wastewater treatment.Separation and Purification Technology,38(1):11-41,https://doi.org/10.1016/j.seppur.2003.10.006.
    Chorus I,Bartram J.1999.Toxic Cyanobacteria in water:a guide to their public health consequences,monitoring and management.E&FN Spon,London.
    Cornish B J P A,Lawton L A,Robertson P K J.2000.Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide.Applied Catalysis B:Environmental,25(1):59-67,https://doi.org/10.1016/S0926-3373(99)00121-6.
    da Silva L M,Santana M H P,Boodts J F C.2003.Electrochemistry and green chemical processes:electrochemical ozone production.Química Nova,26(6):880-888,https://doi.org/10.1590/S0100-40422003000600017.
    Daghrir R,Drogui P,Tshibangu J.2014.Efficient treatment of domestic wastewater by electrochemical oxidation process using bored doped diamond anode.Separation and Purification Technology,131:79-83,https://doi.org/10.1016/j.seppur.2014.04.048.
    Ding Y,Gan N Q,Li J,Sedmak B,Song L R.2012.Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa(Chroococcales,Cyanobacteria)in a dosedependent manner.Phycologia,51:567-575,https://doi.org/10.2216/11-107.1.
    Ding Y,Song L R,Sedmak B.2013.UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria.PLoS One,8(9):e73919,https://doi.org/10.1371/journal.pone.0073919.
    DrábkováM,Admiraal W,Marsalek B.2007.Combined exposure to hydrogen peroxide and light-selective effects on cyanobacteria,green algae,and diatoms.Environmental Science&Technology,41(1):309-314,https://doi.org/10.1021/es060746i.
    Falconer I R.1989.Effects on human health of some toxic cyanobacteria(blue-green algae)in reservoirs,lakes,and rivers.Toxicity Assessment,4(2):175-184,https://doi.org/10.1002/tox.2540040206.
    Frontistis Z,Brebou C,Venieri D,Mantzavinos D,Katsaounis A.2011.BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants,pathogens and organic matter.Journal of Chemical Technology and Biotechnology,86(10):1 233-1 236,https://doi.org/10.1002/jctb.2669.
    Fujita Y.1979.Qualitative and quantitative methods of photosynthetic pigments.In:Nishizawa K,Chihara Meds.Methods in Phycological Studies(Japanese).Kyouritsu Shuppan,Tokyo.p.474-507.
    Gantt E,Lipschultz CA,Grabowski J,Zimmerman B K.1979.Phycobilisomes from blue-green and red algae.Plant Physiology,63(4):615-620.
    García-Montoya M F,Gutiérrez-Granados S,Alatorre-Ordaz A,Galindo R,Ornelas R,Peralta-Hernández J M.2015.Application of electrochemical/BDD process for the treatment wastewater effluents containing pharmaceutical compounds.Journal of Industrial and Engineering Chemistry,31:238-243,https://doi.org/10.1016/j.jiec.2015.06.030.
    Gregor J,Marsalek B,Sipkova H.2007.Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method.Water Research,41(1):228-234,https://doi.org/10.1016/j.watres.2006.08.011.
    Gregor J,Marsalek B.2004.Freshwater phytoplankton quantification by chlorophyll a:A comparative study of in vitro,in vivo and in situ methods.Water Research,38(3):517-522,https://doi.org/10.1016/j.watres.2003.10.033.
    Haaken D,Dittmar T,Schmalz V,Worch E.2012.Influence of operating conditions and wastewater-specific parameters on the electrochemical bulk disinfection of biologically treated sewage at boron-doped diamond(BDD)electrodes.Desalination and Water Treatment,46(1-3):160-167,https://doi.org/10.1080/19443994.2012.677523.
    Harada K I,Tsuji K.1998.Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment.Journal of Toxicology-Toxin Reviews,17(3):385-403,https://doi.org/10.3109/15569549809040400.
    Hilton J,Rigg E,Jaworski G.1989.Algal identification using in-vivo fluorescence spectra.Journal of Plankton Research,11(1):65-74.
    ISO.1992.Water quality-measurement of biochemical parameters-spectrometric determination of the chlorophyll-a concentration:ISO 10260:1992.Geneva,Switzerland:International Organization for Standardization.
    Jancula D,Marsalek B.2011.Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms.Chemosphere,85(9):1 415-1 422,https://doi.org/10.1016/j.chemosphere.2011.08.036.
    Jones G J,Orr P T.1994.Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake,as determined by HPLC and protein phosphatase inhibition assay.Water Research,28(4):871-876,https://doi.org/10.1016/0043-1354(94)90093-0.
    Lacasa E,Tsolaki E,Sbokou Z,Rodrigo M A,Mantzavinos D,Diamadopoulos E.2013.Electrochemical disinfection of simulated ballast water on conductive diamond electrodes.Chemical Engineering Journal,223:516-523,https://doi.org/10.1016/j.cej.2013.03.003.
    Lee T,Tsuzuki M,Takeuchi T,Yokoyama K,Karube I.1994.In-vivo fluorometric method for early detection of cyanobacterial waterblooms.Journal of Applied Phycology,6(5-6):489-495.
    Liao W J,Murugananthan M,Zhang Y R.2014.Electrochemical degradation and mechanistic analysis of microcystin-LRat boron-doped diamond electrode.Chemical Engineering Journal,243:117-126,https://doi.org/10.1016/j.cej.2013.12.091.
    Macário I P E,Castaro B B,Nunes M I S,Antunes S C,Pizarro C,Coelho C,Gon鏰lves F,de Figueiredo D R.2015.New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria.Hydrobiologia,757(1):155-165.
    Martínez-Huitle C A,Brillas E.2009.Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:a general review.Applied Catalysis B:Environmental,87(3-4):105-145,https://doi.org/10.1016/j.apcatb.2008.09.017.
    Martins J,Peixe L,Vasconcelos V M.2011.Unraveling cyanobacteria ecology in wastewater treatment plants(WWTP).Microbial Ecology,62(2):241-256,https://doi.org/10.1007/s00248-011-9806-y.
    Matthijs H C P,Visser P M,Reeze B,Meeuse J,Slot P C,Wijn G,Talens R,Huisman J.2012.Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide.Water Research,46(5):1 460-1 472,https://doi.org/10.1016/j.watres.2011.11.016.
    Meglic A,Pecman A,Rozina T,Lestan D,Sedmak B.2017.Electrochemical inactivation of cyanobacteria and microcystin degradation using a boron-doped diamond anode-A potential tool for cyanobacterial bloom control.Journal of Environmental Sciences,53:248-261,https://doi.org/10.1016/j.jes.2016.02.016.
    Meriluoto J,Spoof L,Codd G A.2017.Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis.Wiley,New York.576p.
    Oldham P B,Zillioux E J,Warner I M.1985.Spectral“fingerprinting”of phytoplankton populations by twodimensional fluorescence and Fourier-transform-based pattern recognition.Journal of Marine Research,43(4):893-906.
    Paerl H W,Hall N S,Calandrino E S.2011.Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.Science of the Total Environment,409(10):1 739-1 745.
    Paerl H W,Otten T G.2013.Harmful cyanobacterial blooms:causes,consequences,and controls.Microbial Ecology,65(4):995-1 010,https://doi.org/10.1007/s00248-012-0159-y.
    Pryor W A.1986.Oxy-radicals and related species:their formation,lifetimes,and reactions.Annual Review of Physiology,48:657-667.
    Rozina T,Sedmak B,Zupancic Justin M,Meglic A.2017.Evaluation of cyanobacteria biomass derived from upgrade of phycocyanin fluorescence estimation.Acta Biologica Slovenica,60(2):21-28.
    Samuilov V D,Timofeev K N,Sinitsyn S V,Bezryadnov D V.2004.H 2 O 2-induced inhibition of photosynthetic O 2evolution by Anabaena variabilis cells.Biochemistry(Moscow),69(8):926-933,https://doi.org/10.1023/B:BIRY.0000040227.66714.19.
    Schmalz V,Dittmar T,Haaken D,Worch E.2009.Electrochemical disinfection of biologically treated wastewater from small treatment systems by using borondoped diamond(BDD)electrodes-contribution for direct reuse of domestic wastewater.Water Research,43(20):5 260-5 266,https://doi.org/10.1016/j.watres.2009.08.036.
    Sedmak B,Carmeli S,Pompe-Novak M,Tusk-Znidaric M,Grach-Pogrebinsky O,Elersk T,Zuzek M C,Bubik A,Frange?R.2009.Cyanobacterial cytoskeleton immunostaining:the detection of cyanobacterial cell lysis induced by planktopeptin BL1125.Journal of Plankton Research,31(11):1 321-1 330,https://doi.org/10.1093/plankt/fbp076.
    Seppala J,Ylostalo P,Kaitala S,Hallfors S,Raateoja M,Maunula P.2007.Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea.Estuarine,Coastal and Shelf Science,73(3-4):489-500.
    Sharma V K,Triantis T M,Antoniou M G,He X X,Pelaez M,Han C,Song W H,O’Shea K E,de la Cruz A A,Kaloudis T,Hiskia A,Dionysiou D D.2012.Destruction of microcystins by conventional and advanced oxidation processes:a review.Separation and Purification Technology,91:3-17,https://doi.org/10.1016/j.seppur.2012.02.018.
    Svircev Z,Drobac D,Tokodi N,Mijovic B,Codd G A,Meriluoto J.2017.Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins.Archives of Toxicology,91(2):621-650,https://doi.org/10.1007/s00204-016-1921-6.
    Tsuji K,Watanuki T,Kondo F,Watanabe M F,Nakazawa H,Suzuki M,Uchida H,Harada K I.1997.Stability of microcystins from cyanobacteria-iv.effect of chlorination on decomposition.Toxicon,35(7):1 033-1 041.
    van Hullebusch E D,Zandvoort M H,Lens P N L.2003.Metal immobilisation by biofilms:mechanisms and analytical tools.Reviews in Environmental Science and Biotechnology,2(1):9-33.
    Wlodarczyk L M,Moldaenke C,Fiedor L.2012.Fluorescence as a probe for physiological integrity of freshwater cyanobacteria.Hydrobiologia,695(1):73-81,https://doi.org/10.1007/s10750-012-1122-0.
    Yamamoto Y,Nakahara H.2009.Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond.Limnology,10(3):185-193,https://doi.org/10.1007/s10201-009-0270-z.
    Yang Z,Kong F X,Shi X L,Yu Y,Zhang M.2015.Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain.Journal of Hazardous Materials,283:447-453.
    Yentsch C S,Yentsch C M.1979.Fluorescence spectral signatures:the characterization of phytoplankton population by the use of excitation and emission spectra.Journal of Marine Research,37(3):471-483.
    Zhang C Y,Fu D G,Gu Z Z.2009.Degradation of microcystinRR using boron-doped diamond electrode.Journal of Hazardous Materials,172(2-3):847-853,https://doi.org/10.1016/j.jhazmat.2009.07.071.
    Zilinskas B A,Glick R E.1981.Noncovalent intermolecular forces in phycobilisomes of Porphyridium cruentum.Plant Physiology,68(2):447-452.
    Zupancic Justin M,Gerl M,Lakovic G,Sedmak B,Rozina T,Finzgar N,Cic M,Marinovic M,Teslic L,Grum J,Cter M,Elersk T,Meglic A,Yakuntsov A,Pokorn L,Kralj T,Ber鑟n M,Hamiti B.2017.LIFE stop cyanoBloom:innovative technology for cyanobacterial bloom control:LIFE12 ENV/SI/000783.Arhel d.o.o.,National Institute of Biology and Municipality Bled,Slovenia,http://lifestopcyanobloom.arhel.si/wp-content/uploads/LIFE-12ENVSI783-Stop-CyanoBloom-Technical-Report-forpublication.pdf.
    Zurawell R W,Chen H R,Burke J M,Prepas E E.2005.Hepatotoxic cyanobacteria:a review of the biological importance of microcystins in freshwater environments.Journal of Toxicology and Environmental Health,Part B,8(1):1-37,https://doi.org/10.1080/10937400590889412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700