太赫兹波沿倾斜路径在云层中的衰减
详细信息    查看官网全文
摘要
水汽凝结体对太赫兹波在大气中的传输衰减起重要作用。针对太赫兹波在云层中受到水滴和冰晶相互作用下的衰减效应进行了研究。首先构建了三维大气分层结构,显示了云层在大气中的二维分布,基于洛伦茨-米理论和Tmatrix方法分别对云层中球形水滴和非球形冰晶粒子在太赫兹波段的吸收和散射效应进行了数值计算,发展了一个太赫兹波在云层中传输的统计衰减模型。将水云的计算结果与国际无线电联盟(ITU)的结果比对验证了理论方法的有效性。分析了太赫兹波段水云和冰云的衰减特性,发现太赫兹波段冰云的散射特性明显,衰减系数平均比水云高十几d B。在倾斜路径大气分层传输模型中加入云的统计衰减模型,利用雷达测量的绵阳地区的云层分布特点,计算了太赫兹波在真实大气的传输衰减,为太赫兹波星地通信提供了重要参考数据。
The weather conditions like fog, rain and clouds cause strong attenuation of the terahertz signals and communication links outages. So the influence of cloud attenuation on the performance of terahertz atmospheric propagation is studied and analyzed. Firstly, a layered structure of 3D atmosphere including the cloud box is presented. A statistic attenuation model for terahertz wave is developed with Lorentz-Mie theory of spherical droplets and Tmatrix method of nonspherical ice crystal. The optical properties containing the extinction, scattering, and absorption coefficients are calculated and analyzed on the basis of the microphysical data and also showed their comparison with ITU-R model. The meteorological data in Mianyang onboard cloud radars are used. Taking into account the cloud box, the attenuation characteristics of terahertz atmospheric transmission along the slant path between 0.1 and 3THz are studied using the statistic attenuation model so that for the development of terahertz wireless communication links.
引文
[1]王玉文,董志伟,周逊,等.太赫兹波大气传输衰减模型[J].强激光与粒子束,2015,27(10):103218-1-6Wang Yuwen,Dong Zhiwei,Zhou Xun,et al.THz atmospheric attenuation model[J].High Power Laser and Particle Beams,2015,27(10):103218-1-6
    [2]Salonen E,Uppala S.New prediction method of cloud attenuation.Electron.Lett.[J],1991,27(12):1106-1108
    [3]Liebe H J,Hufford G A,Cotton M G.Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz.In AGARD,Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation 11 p(SEE N94-30495 08-32).1993,1.
    [4]Awan M S,Leitgeb E,Hillbrand B,et al.Cloud attenuations for free-space optical links.Satellite and Space Communications[C],2009.IWSSC 2009.International Workshop on.IEEE,2009:274-278
    [5]Gong B,Lou G,Li X.Research on the sub-millimeter wave hydrometeors attenuation characteristic[J].Journal of Infrared,Millimeter,and Terahertz Waves,2009,30(11):1234-1242
    [6]王玉文,房艳燕,董志伟,等.太赫兹波沿大气层倾斜路径的传输衰减[J].电波科学学报,2015,30(4):783-788Wand Yuwen,Fang Yanyan,Dong Zhiwei,et al.Terahertz transmission attenuation along the atmospheric slant path[J].Chinese Journal of Radio Science,2015,30(4):783-788
    [7]Eriksson P,Buehler S A,Davis C P,et al.ARTS,the atmospheric radiative transfer simulator,version 2[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112(10):1551-1558
    [8]Du H.Mie-scattering calculation.Applied Optics,2004,43(9):1951-1956
    [9]Hess M,Koepke P,Schult I.Optical properties of aerosols and clouds:The software package OPAC[J].Bulletin of the American meteorological society,1998,79(5):831-844
    [10]ITU-R recommendation P.840-6,Attenuation due to clouds and fog,Geneva,Switzerland,2013
    [11]Mishchenko M I,Travis L D,Lacis A A.Scattering,absorption,and emission of light by small particles.Cambridge university press,2002.
    [12]Mc Farquhar G M,Heymsfield A J.Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer:Results from CEPEX[J].Journal of the atmospheric sciences,1997,54(17):2187-2200
    [13]Warren S G.Optical constants of ice from the ultraviolet to the microwave[J].Applied optics,1984,23(8):1206-1225
    [14]Salby M L.Fundamentals of atmospheric physics.Academic press,1996
    [15]http://www.data.cma.cn

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700