高效宽带隙聚合物光伏材料的设计与合成
详细信息    查看官网全文
摘要
聚合物太阳能电池具有制备工艺简单、成本低、重量轻以及可制成柔性器件等突出优点,是目前国际上的热点研究领域[1]。高效聚合物光伏材料的设计与合成是提高聚合物太阳能电池性能的关键因素之一。之前工作中,我们通过调节两维聚合物共轭侧链的π电子密度,在不影响聚合物吸收光谱和迁移率的前提下,有效降低了聚合物的分子能级;进而提高光伏器件的开路电压和能量转化效率[2-4]。最近由于宽吸收受体材料的快速发展,设计合成新型高效宽带隙共轭聚合物光伏材料成为这一材料共混体系新的驱动力。我们基于噻吩衍生物或者D-A共聚物合成一系列宽带隙共轭聚合物光伏材料,其中基于光学带隙为1.80 e V的聚合物PM6与PC_(71)BM共混体系的器件效率达到9.2%;基于光学带隙为2.0 e V的聚合物PT9与PC_(71)BM共混体系的器件效率超过8%,与IDIC共混体系的器件效率接近10%。
Polymer solar cells(PSCs) have attracted considerable attention for applications in renewable energy due to their low cost, easy fabrication, light weight, and the capability to fabricate flexible large-area devices.The design and synthesis of polymer donor photovoltaic materials plays an important role in the high efficient polymer solar cells. In previous works, molecular energy levels of 2-D conjugated polymers were effectively modulated by reducing the pi-electron density of conjugated side chains, which caused minor effect on the absorption spectra and mobilities. Recently, we applied this strategy to design and synthesize a series of broad bandgap polymers. Among these materials, PSCs based on the blend of PM6 with bandgap of 1.8 e V and PC71 BM show a PCE of 9.2%; PSCs based on the blend of PT9 with bandgap of 2.0 e V and PC_(71)BM show a PCE over 8.0% while PSCs based on the blend of PT9 and ITIC exhibit a PCE of near 10%.
引文
[1]Li,Y.F.Accounts Chem Res 2012,45,723.
    [2]Zhang,M.J.;Gu,Y.;Guo,X.;Liu,F.;Zhang,S.Q.;Huo,L.J.;Russell,T.P.;Hou,J.H.Adv Mater 2013,25,4944.
    [3]Zhang,M.J.;Guo,X.;Zhang,S.Q.;Hou,J.H.Adv Mater 2014,26,1118.
    [4]Zhang,M.J.;Guo,X.;Ma,W.;Zhang,S.Q.;Huo,L.J.;Ade,H.;Hou,J.H.Adv Mater 2014,26,2089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700